Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34498673

RESUMO

The key to generating the best deep learning model for predicting molecular property is to test and apply various optimization methods. While individual optimization methods from different past works outside the pharmaceutical domain each succeeded in improving the model performance, better improvement may be achieved when specific combinations of these methods and practices are applied. In this work, three high-performance optimization methods in the literature that have been shown to dramatically improve model performance from other fields are used and discussed, eventually resulting in a general procedure for generating optimized CNN models on different properties of molecules. The three techniques are the dynamic batch size strategy for different enumeration ratios of the SMILES representation of compounds, Bayesian optimization for selecting the hyperparameters of a model and feature learning using chemical features obtained by a feedforward neural network, which are concatenated with the learned molecular feature vector. A total of seven different molecular properties (water solubility, lipophilicity, hydration energy, electronic properties, blood-brain barrier permeability and inhibition) are used. We demonstrate how each of the three techniques can affect the model and how the best model can generally benefit from using Bayesian optimization combined with dynamic batch size tuning.


Assuntos
Aprendizado Profundo , Teorema de Bayes , Redes Neurais de Computação , Solubilidade
2.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35945035

RESUMO

Neural network (NN)-based protein modeling methods have improved significantly in recent years. Although the overall accuracy of the two non-homology-based modeling methods, AlphaFold and RoseTTAFold, is outstanding, their performance for specific protein families has remained unexamined. G-protein-coupled receptor (GPCR) proteins are particularly interesting since they are involved in numerous pathways. This work directly compares the performance of these novel deep learning-based protein modeling methods for GPCRs with the most widely used template-based software-Modeller. We collected the experimentally determined structures of 73 GPCRs from the Protein Data Bank. The official AlphaFold repository and RoseTTAFold web service were used with default settings to predict five structures of each protein sequence. The predicted models were then aligned with the experimentally solved structures and evaluated by the root-mean-square deviation (RMSD) metric. If only looking at each program's top-scored structure, Modeller had the smallest average modeling RMSD of 2.17 Å, which is better than AlphaFold's 5.53 Å and RoseTTAFold's 6.28 Å, probably since Modeller already included many known structures as templates. However, the NN-based methods (AlphaFold and RoseTTAFold) outperformed Modeller in 21 and 15 out of the 73 cases with the top-scored model, respectively, where no good templates were available for Modeller. The larger RMSD values generated by the NN-based methods were primarily due to the differences in loop prediction compared to the crystal structures.


Assuntos
Receptores Acoplados a Proteínas G , Software , Bases de Dados de Proteínas , Modelos Moleculares , Conformação Proteica , Receptores Acoplados a Proteínas G/química
3.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34530437

RESUMO

The trade-off between a machine learning (ML) and deep learning (DL) model's predictability and its interpretability has been a rising concern in central nervous system-related quantitative structure-activity relationship (CNS-QSAR) analysis. Many state-of-the-art predictive modeling failed to provide structural insights due to their black box-like nature. Lack of interpretability and further to provide easy simple rules would be challenging for CNS-QSAR models. To address these issues, we develop a protocol to combine the power of ML and DL to generate a set of simple rules that are easy to interpret with high prediction power. A data set of 940 market drugs (315 CNS-active, 625 CNS-inactive) with support vector machine and graph convolutional network algorithms were used. Individual ML/DL modeling methods were also constructed for comparison. The performance of these models was evaluated using an additional external dataset of 117 market drugs (42 CNS-active, 75 CNS-inactive). Fingerprint-split validation was adopted to ensure model stringency and generalizability. The resulting novel hybrid ensemble model outperformed other constituent traditional QSAR models with an accuracy of 0.96 and an F1 score of 0.95. With the power of the interpretability provided with this protocol, our model laid down a set of simple physicochemical rules to determine whether a compound can be a CNS drug using six sub-structural features. These rules displayed higher classification ability than classical guidelines, with higher specificity and more mechanistic insights than just for blood-brain barrier permeability. This hybrid protocol can potentially be used for other drug property predictions.


Assuntos
Aprendizado Profundo , Barreira Hematoencefálica , Aprendizado de Máquina , Permeabilidade , Máquina de Vetores de Suporte
4.
J Biol Chem ; 298(6): 101957, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35452675

RESUMO

Japanese encephalitis is a mosquito-borne disease caused by the Japanese encephalitis virus (JEV) that is prevalent in Asia and the Western Pacific. Currently, there is no effective treatment for Japanese encephalitis. Curcumin (Cur) is a compound extracted from the roots of Curcuma longa, and many studies have reported its antiviral and anti-inflammatory activities. However, the high cytotoxicity and very low solubility of Cur limit its biomedical applications. In this study, Cur carbon quantum dots (Cur-CQDs) were synthesized by mild pyrolysis-induced polymerization and carbonization, leading to higher water solubility and lower cytotoxicity, as well as superior antiviral activity against JEV infection. We found that Cur-CQDs effectively bound to the E protein of JEV, preventing viral entry into the host cells. In addition, after continued treatment of JEV with Cur-CQDs, a mutant strain of JEV was evolved that did not support binding of Cur-CQDs to the JEV envelope. Using transmission electron microscopy, biolayer interferometry, and molecular docking analysis, we revealed that the S123R and K312R mutations in the E protein play a key role in binding Cur-CQDs. The S123 and K312 residues are located in structural domains II and III of the E protein, respectively, and are responsible for binding to receptors on and fusing with the cell membrane. Taken together, our results suggest that the E protein of flaviviruses represents a potential target for the development of CQD-based inhibitors to prevent or treat viral infections.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Pontos Quânticos , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbono , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/tratamento farmacológico , Simulação de Acoplamento Molecular , Proteínas do Envelope Viral/metabolismo
5.
Anal Chem ; 95(6): 3317-3324, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36724516

RESUMO

Mass spectrometry imaging (MSI) is a powerful tool that can be used to simultaneously investigate the spatial distribution of different molecules in samples. However, it is difficult to comprehensively analyze complex biological systems with only a single analytical technique due to different analytical properties and application limitations. Therefore, many analytical methods have been combined to extend data interpretation, evaluate data credibility, and facilitate data mining to explore important temporal and spatial relationships in biological systems. Image registration is an initial and critical step for multimodal imaging data fusion. However, the image registration of multimodal images is not a simple task. The property difference between each data modality may include spatial resolution, image characteristics, or both. The image registrations between MSI and different imaging techniques are often achieved indirectly through histology. Many methods exist for image registration between MSI data and histological images. However, most of them are manual or semiautomatic and have their prerequisites. Here, we built MSI Registrar (MSIr), a web service for automatic registration between MSI and histology. It can help to reduce subjectivity and processing time efficiently. MSIr provides an interface for manually selecting region of interests from histological images; the user selects regions of interest to extract the corresponding spectrum indices in MSI data. In the performance evaluation, MSIr can quickly map MSI data to histological images and help pinpoint molecular components at specific locations in tissues. Most registrations were adequate and were without excessive shifts. MSIr is freely available at https://msir.cmdm.tw and https://github.com/CMDM-Lab/MSIr.


Assuntos
Diagnóstico por Imagem , Técnicas Histológicas , Espectrometria de Massas/métodos , Mineração de Dados
6.
Brief Bioinform ; 22(3)2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32501508

RESUMO

Aqueous solubility is the key property driving many chemical and biological phenomena and impacts experimental and computational attempts to assess those phenomena. Accurate prediction of solubility is essential and challenging, even with modern computational algorithms. Fingerprint-based, feature-based and molecular graph-based representations have all been used with different deep learning methods for aqueous solubility prediction. It has been clearly demonstrated that different molecular representations impact the model prediction and explainability. In this work, we reviewed different representations and also focused on using graph and line notations for modeling. In general, one canonical chemical structure is used to represent one molecule when computing its properties. We carefully examined the commonly used simplified molecular-input line-entry specification (SMILES) notation representing a single molecule and proposed to use the full enumerations in SMILES to achieve better accuracy. A convolutional neural network (CNN) was used. The full enumeration of SMILES can improve the presentation of a molecule and describe the molecule with all possible angles. This CNN model can be very robust when dealing with large datasets since no additional explicit chemistry knowledge is necessary to predict the solubility. Also, traditionally it is hard to use a neural network to explain the contribution of chemical substructures to a single property. We demonstrated the use of attention in the decoding network to detect the part of a molecule that is relevant to solubility, which can be used to explain the contribution from the CNN.


Assuntos
Aprendizado Profundo , Água/química , Algoritmos , Redes Neurais de Computação , Solubilidade
7.
Global Health ; 19(1): 57, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37580752

RESUMO

BACKGROUND: Co-development alliances and capital-raising activities are essential supports for biopharmaceutical innovation. During the initial outbreak of the COVID-19, the level of these business activities has increased greatly. Yet the magnitude, direction, and duration of the trend remain ambiguous. Real-time real-world data are needed to inform strategic redirections and industrial policies. METHODS: This observational study aims to characterize trends in global biopharma innovation activities throughout the global pandemic outbreak. Our extensive deal dataset is retrieved from the commercial database GlobalData (12,866 partnership deals and 32,250 fundraising deals announced between 2011 and 2022). We perform Chi-squared tests to examine the changes in qualitative deal attributes during and beyond the outbreak. Our deal-level sample is further aggregated into category-level panel data according to deal characteristics such as therapy area, molecule type, and development phase. We run a series of regressions to examine how the monthly investment amount raised in each category changed with the onset of the pandemic, controlling for the US Federal funds rate. RESULTS: The temporary surge of partnership and capital-raising activities was associated with the increase in infectious disease-related deals. Academic and government institutions played an increased role in supporting COVID-related co-development partnerships in 2020, and biopharma ventures had been securing more investments in the capital market throughout 2020 and 2021. The partnership and investment boom did not last till the later pandemic in 2022. The most significant and enduring trend was the shifting focus toward discovery-phase investments. Our regression model reveals that the discovery-phase fundraising deals did not suffer from a bounce back in the late pandemic, consistent with a persistent focus on early innovation. CONCLUSIONS: Despite the reduced level of partnership and fundraising activities during 2022, we observe a lasting change in focus toward biopharmaceutical innovation after the pandemic outbreak. Our evidence suggests how entrepreneurs and investors should allocate resources in response to the post-pandemic tight monetary environment. We also suggest the need for policy interventions in financing private/public co-development partnerships and non-COVID-related technologies, to maintain their research capacity and generate breakthroughs when faced with unforeseen diseases.


Assuntos
COVID-19 , Obtenção de Fundos , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Organizações , Parcerias Público-Privadas , Comércio
8.
J Formos Med Assoc ; 121(12): 2649-2652, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36031487

RESUMO

New psychoactive substances (NPS) have increasingly been illegally synthesized and used around the world in recent years. Due to the large volume and the variety of NPS, most do not have sufficient information about their addictive potential and harmful effects to human subjects. This makes it difficult to evaluate these potential substances of abuse. This study aims to build a database based on Taiwan's controlled substances, to provide quick structural and pharmacological feedback. Taiwan Controlled Substances Database (TCSD) includes the collection of controlled substances, relevant experimental and structural information, as well as computational features such as molecular fingerprints and descriptors. Two types of structural search were added: substructure search and topological fingerprint similarity search. A web framework was used to enhance accessibility and usability (https://cs2search.cmdm.tw).


Assuntos
Substâncias Controladas , Humanos , Taiwan , Bases de Dados Factuais
9.
Bioinformatics ; 34(17): 2982-2987, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648583

RESUMO

Motivation: Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Results: Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3923 lipids and more than 400 000 annotations of associated diseases, pathways, functions and locations that are essential for interpreting lipid functions and mechanisms from over 1 400 000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. Availability and implementation: LipidPedia is available at http://lipidpedia.cmdm.tw. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Bases de Conhecimento , Lipídeos/análise , Bases de Dados Factuais
10.
J Biomed Sci ; 24(1): 18, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245819

RESUMO

BACKGROUND: Sarcosine, a glycine transporter type 1 inhibitor and an N-methyl-D-aspartate (NMDA) receptor co-agonist at the glycine binding site, potentiates NMDA receptor function. Structurally similar to sarcosine, N,N-dimethylglycine (DMG) is also N-methyl glycine-derivative amino acid and commonly used as a dietary supplement. The present study compared the effects of sarcosine and DMG on NMDA receptor-mediated excitatory field potentials (EFPs) in mouse medial prefrontal cortex brain slices using a multi-electrode array system. RESULTS: Glycine, sarcosine and DMG alone did not alter the NMDA receptor-mediated EFPs, but in combination with glutamate, glycine and its N-methyl derivatives significantly increased the frequency and amplitude of EFPs. The enhancing effects of glycine analogs in combination with glutamate on EFPs were remarkably reduced by the glycine binding site antagonist 7-chlorokynurenate (7-CK). However, DMG, but not sarcosine, reduced the frequency and amplitude of EFPs elicited by co-application of glutamate plus glycine. D-cycloserine, a partial agonist at the glycine binding site on NMDA receptors, affected EFPs in a similar manner to DMG. Furthermore, DMG, but not sarcosine, reduced the frequencies and amplitudes of EFPs elicited by glutamate plus D-serine, another endogenous ligand for glycine binding site. CONCLUSIONS: These findings suggest that sarcosine acts as a full agonist, yet DMG is a partial agonist at glycine binding site of NMDA receptors. The molecular docking analysis indicated that the interactions of glycine, sarcosine, and DMG to NMDA receptors are highly similar, supporting that the glycine binding site of NMDA receptors is a critical target site for sarcosine and DMG.


Assuntos
Potenciais da Membrana/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Sarcosina/análogos & derivados , Sarcosina/farmacologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos ICR
11.
Anal Chem ; 87(19): 9731-9, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26359637

RESUMO

Studies of the cell metabolome greatly improve our understanding of cell biology. Currently, most cellular metabolomics studies control only cell numbers or protein content without adjusting the total metabolite concentration, mainly because of the lack of an effective concentration normalization method for cell metabolites. This study proposed a matrix-induced ion suppression (MIIS) method to measure the total amount of cellular metabolites by utilizing flow injection analysis coupled with electrospray ionization mass spectrometry (FIA-ESI-MS).We used series dilutions of HL-60 cell extracts to establish the relationship between cellular metabolite concentration and the degree of ion suppression of the ion suppression indicator, and a good correlation was obtained between 2- and 12-fold dilutions of cell extracts (R(2) = 0.999). Two lung cancer cells, CL1-0 and CL1-5, were selected as the model cell lines to evaluate the efficacy of the MIIS method and the importance of metabolite concentration normalization. Through MIIS analysis, CL1-0 cells were found to contain metabolites at a concentration 2.1 times higher than in CL1-5, and the metastatic properties of CL1-5 could only be observed after 2.1-fold dilution of CL1-0 before metabolomic analysis. Our results demonstrated that the MIIS method is an effective approach for metabolite concentration normalization and that controlling metabolite concentrations can improve data integrity in cellular metabolomics studies.


Assuntos
Análise de Injeção de Fluxo/métodos , Metaboloma , Metabolômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Adenocarcinoma/metabolismo , Linhagem Celular Tumoral , Humanos , Íons/química , Pulmão/metabolismo , Neoplasias Pulmonares/metabolismo
12.
Toxicol Appl Pharmacol ; 288(1): 52-62, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26200234

RESUMO

Carbon nanotubes have become widely used in a variety of applications including biosensors and drug carriers. Therefore, the issue of carbon nanotube toxicity is increasingly an area of focus and concern. While previous studies have focused on the gross mechanisms of action relating to nanomaterials interacting with biological entities, this study proposes detailed mechanisms of action, relating to nanotoxicity, for a series of decorated (functionalized) carbon nanotube complexes based on previously reported QSAR models. Possible mechanisms of nanotoxicity for six endpoints (bovine serum albumin, carbonic anhydrase, chymotrypsin, hemoglobin along with cell viability and nitrogen oxide production) have been extracted from the corresponding optimized QSAR models. The molecular features relevant to each of the endpoint respective mechanism of action for the decorated nanotubes are also discussed. Based on the molecular information contained within the optimal QSAR models for each nanotoxicity endpoint, either the decorator attached to the nanotube is directly responsible for the expression of a particular activity, irrespective of the decorator's 3D-geometry and independent of the nanotube, or those decorators having structures that place the functional groups of the decorators as far as possible from the nanotube surface most strongly influence the biological activity. These molecular descriptors are further used to hypothesize specific interactions involved in the expression of each of the six biological endpoints.


Assuntos
Nanotubos de Carbono/toxicidade , Anidrases Carbônicas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Quimotripsina/metabolismo , Hemoglobinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Estrutura Molecular , Nanotubos de Carbono/química , Óxido Nítrico/metabolismo , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Soroalbumina Bovina/metabolismo , Propriedades de Superfície
13.
IEEE J Biomed Health Inform ; 28(2): 1066-1077, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064333

RESUMO

We present PathoOpenGait, a cloud-based platform for comprehensive gait analysis. Gait assessment is crucial in neurodegenerative diseases such as Parkinson's and multiple system atrophy, yet current techniques are neither affordable nor efficient. PathoOpenGait utilizes 2D and 3D data from a binocular 3D camera for monitoring and analyzing gait parameters. Our algorithms, including a semi-supervised learning-boosted neural network model for turn time estimation and deterministic algorithms to estimate gait parameters, were rigorously validated on annotated gait records, demonstrating high precision and consistency. We further demonstrate PathoOpenGait's applicability in clinical settings by analyzing gait trials from Parkinson's patients and healthy controls. PathoOpenGait is the first open-source, cloud-based system for gait analysis, providing a user-friendly tool for continuous patient care and monitoring. It offers a cost-effective and accessible solution for both clinicians and patients, revolutionizing the field of gait assessment. PathoOpenGait is available at https://pathoopengait.cmdm.tw.


Assuntos
Análise da Marcha , Doença de Parkinson , Humanos , Marcha , Algoritmos , Aprendizado de Máquina Supervisionado
14.
NPJ Digit Med ; 7(1): 31, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38332372

RESUMO

The Motor Disorder Society's Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is designed to assess bradykinesia, the cardinal symptoms of Parkinson's disease (PD). However, it cannot capture the all-day variability of bradykinesia outside the clinical environment. Here, we introduce FastEval Parkinsonism ( https://fastevalp.cmdm.tw/ ), a deep learning-driven video-based system, providing users to capture keypoints, estimate the severity, and summarize in a report. Leveraging 840 finger-tapping videos from 186 individuals (103 patients with Parkinson's disease (PD), 24 participants with atypical parkinsonism (APD), 12 elderly with mild parkinsonism signs (MPS), and 47 healthy controls (HCs)), we employ a dilated convolution neural network with two data augmentation techniques. Our model achieves acceptable accuracies (AAC) of 88.0% and 81.5%. The frequency-intensity (FI) value of thumb-index finger distance was indicated as a pivotal hand parameter to quantify the performance. Our model also shows the usability for multi-angle videos, tested in an external database enrolling over 300 PD patients.

15.
Sci Data ; 11(1): 203, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355591

RESUMO

This study entailed a comprehensive GC‒MS analysis conducted on 121 patient samples to generate a clinical breathomics dataset. Breath molecules, indicative of diverse conditions such as psychological and pathological states and the microbiome, were of particular interest due to their non-invasive nature. The highlighted noninvasive approach for detecting these breath molecules significantly enhances diagnostic and monitoring capacities. This dataset cataloged volatile organic compounds (VOCs) from the breath of individuals with asthma, bronchiectasis, and chronic obstructive pulmonary disease. Uniform and consistent sample collection protocols were strictly adhered to during the accumulation of this extensive dataset, ensuring its reliability. It encapsulates extensive human clinical breath molecule data pertinent to three specific diseases. This consequential clinical breathomics dataset is a crucial resource for researchers and clinicians in identifying and exploring important compounds within the patient's breath, thereby augmenting future diagnostic and therapeutic initiatives.


Assuntos
Asma , Testes Respiratórios , Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Compostos Orgânicos Voláteis , Humanos , Asma/diagnóstico , Testes Respiratórios/métodos , Expiração , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Bronquiectasia/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico
16.
Electrophoresis ; 34(19): 2918-27, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23580246

RESUMO

This study developed CE and ultra-high-pressure LC (UHPLC) methods coupled with UV detectors to characterize the metabolomic profiles of different rhubarb species. The optimal CE conditions used a BGE with 15 mM sodium tetraborate, 15 mM sodium dihydrogen phosphate monohydrate, 30 mM sodium deoxycholate, and 30% ACN v/v at pH 8.3. The optimal UHPLC conditions used a mobile phase composed of 0.05% phosphate buffer and ACN with gradient elution. The gradient profile increased linearly from 10 to 21% ACN within the first 25 min, then increased to 33% ACN for the next 10 min. It took another 5 min to reach the 65% ACN, then for the next 5 min, it stayed unchanged. Sixteen samples of Rheum officinale and Rheum tanguticum collected from various locations were analyzed by CE and UHPLC methods. The metabolite profiles of CE were aligned and baseline corrected before chemometric analysis. Metabolomic signatures of rhubarb species from CE and UHPLC were clustered using principle component analysis and distance-based redundancy analysis; the clusters were not only able to discriminate different species but also different cultivation regions. Similarity measurements were performed by calculating the correlation coefficient of each sample with the authentic samples. Hybrid rhizome was clearly identified through similarity measurement of UHPLC metabolite profile and later confirmed by gene sequencing. The present study demonstrated that CE and UHPLC are efficient and effective tools to identify and authenticate herbs even coupled with simple detectors.


Assuntos
Eletroforese Capilar/métodos , Metaboloma , Metabolômica/métodos , Rheum/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Análise por Conglomerados , Análise de Componente Principal , Rheum/química
17.
J Vasc Surg ; 58(4): 989-96.e1, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23688629

RESUMO

BACKGROUND: Individuals with peripheral arterial disease (PAD) have a nearly two-fold increased risk of all-cause and cardiovascular disease mortality compared to those without PAD. This pilot study determined whether metabolomic profiling can accurately identify patients with PAD who are at increased risk of near-term mortality. METHODS: We completed a case-control study using (1)H NMR metabolomic profiling of plasma from 20 decedents with PAD, without critical limb ischemia, who had blood drawn within 8 months prior to death (index blood draw) and within 10 to 28 months prior to death (preindex blood draw). Twenty-one PAD participants who survived more than 30 months after their index blood draw served as a control population. RESULTS: Results showed distinct metabolomic patterns between preindex decedent, index decedent, and survivor samples. The major chemical signals contributing to the differential pattern (between survivors and decedents) arose from the fatty acyl chain protons of lipoproteins and the choline head group protons of phospholipids. Using the top 40 chemical signals for which the intensity was most distinct between survivor and preindex decedent samples, classification models predicted near-term all-cause death with overall accuracy of 78% (32/41), a sensitivity of 85% (17/20), and a specificity of 71% (15/21). When comparing survivor with index decedent samples, the overall classification accuracy was optimal at 83% (34/41) with a sensitivity of 80% (16/20) and a specificity of 86% (18/21), using as few as the top 10 to 20 chemical signals. CONCLUSIONS: Our results suggest that metabolomic profiling of plasma may be useful for identifying PAD patients at increased risk for near-term death. Larger studies using more sensitive metabolomic techniques are needed to identify specific metabolic pathways associated with increased risk of near-term all-cause mortality among PAD patients.


Assuntos
Extremidade Inferior/irrigação sanguínea , Metabolômica , Doença Arterial Periférica/sangue , Doença Arterial Periférica/mortalidade , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Causas de Morte , Distribuição de Qui-Quadrado , Feminino , Humanos , Modelos Logísticos , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica/métodos , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Medição de Risco , Fatores de Risco , Fatores de Tempo
18.
Brief Funct Genomics ; 22(3): 291-301, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36723978

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in December 2019. As of mid-2021, the delta variant was the primary type; however, in January 2022, the omicron (BA.1) variant rapidly spread and became the dominant type in the United States. In June 2022, its subvariants surpassed previous variants in different temporal and spatial situations. To investigate the high transmissibility of omicron variants, we assessed the complex of spike protein 1 receptor-binding domain (S1RBD) and human angiotensin-converting enzyme 2 (hACE2) from the Protein Data Bank (6m0j, 7a91, 7mjn, 7v80, 7v84, 7v8b, 7wbl and 7xo9) and directly mutated specific amino acids to simulate several variants, including variants of concern (alpha, beta, gamma, delta), variants of interest (delta plus, epsilon, lambda, mu, mu without R346K) and omicron variants (BA.1, BA.2, BA.2.12.1, BA.4, BA.5). Molecular dynamics (MD) simulations for 100 ns under physiological conditions were then performed. We found that the omicron S1RBD-hACE2 complexes become more compact with increases in hydrogen-bond interactions at the interface, which is related to the transmissibility of SARS-CoV-2. Moreover, the relaxation time of hydrogen bonds is relatively short among the omicron variants, which implies that the interface conformation alterations are fast. From the molecular perspective, PHE486 and TYR501 in omicron S1RBDs need to involve hydrogen bonds and hydrophobic interactions on the interface. Our study provides structural features of the dominant variants that explain the evolution trend and their increased contagiousness and could thus also shed light on future variant changes.


Assuntos
Enzima de Conversão de Angiotensina 2 , COVID-19 , Humanos , Enzima de Conversão de Angiotensina 2/genética , Ligação de Hidrogênio , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
19.
ACS Omega ; 8(18): 15854-15864, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179635

RESUMO

Since the first food database was released over one hundred years ago, food databases have become more diversified, including food composition databases, food flavor databases, and food chemical compound databases. These databases provide detailed information about the nutritional compositions, flavor molecules, and chemical properties of various food compounds. As artificial intelligence (AI) is becoming popular in every field, AI methods can also be applied to food industry research and molecular chemistry. Machine learning and deep learning are valuable tools for analyzing big data sources such as food databases. Studies investigating food compositions, flavors, and chemical compounds with AI concepts and learning methods have emerged in the past few years. This review illustrates several well-known food databases, focusing on their primary contents, interfaces, and other essential features. We also introduce some of the most common machine learning and deep learning methods. Furthermore, a few studies related to food databases are given as examples, demonstrating their applications in food pairing, food-drug interactions, and molecular modeling. Based on the results of these applications, it is expected that the combination of food databases and AI will play an essential role in food science and food chemistry.

20.
Bioinform Adv ; 3(1): vbad061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234699

RESUMO

Motivation: Liquid chromatography coupled with mass spectrometry (LC-MS) is widely used in metabolomics studies, while HILIC LC-MS is particularly suited for polar metabolites. Determining an optimized mobile phase and developing a proper liquid chromatography method tend to be laborious, time-consuming and empirical. Results: We developed a containerized web tool providing a workflow to quickly determine the optimized mobile phase by batch-evaluating chromatography peaks for metabolomics LC-MS studies. A mass chromatographic quality value, an asymmetric factor, and the local maximum intensity of the extracted ion chromatogram were calculated to determine the number of peaks and peak retention time. The optimal mobile phase can be quickly determined by selecting the mobile phase that produces the largest number of resolved peaks. Moreover, the workflow enables one to automatically process the repeats by evaluating chromatography peaks and determining the retention time of large standards. This workflow was validated with 20 chemical standards and successfully constructed a reference library of 571 metabolites for the HILIC LC-MS platform. Availability and implementation: MetaMOPE is freely available at https://metamope.cmdm.tw. Source code and installation instructions are available on GitHub: https://github.com/CMDM-Lab/MetaMOPE. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA