Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108740

RESUMO

Asthma is a chronic inflammatory disease that affects the lower respiratory system and includes several categories of patients with varying features or phenotypes. Patients with severe asthma (SA) represent a group of asthmatics that are poorly responsive to medium-to-high doses of inhaled corticosteroids and additional controllers, thus leading in some cases to life-threatening disease exacerbations. To elaborate on SA heterogeneity, the concept of asthma endotypes has been developed, with the latter being characterized as T2-high or low, depending on the type of inflammation implicated in disease pathogenesis. As SA patients exhibit curtailed responses to standard-of-care treatment, biologic therapies are prescribed as adjunctive treatments. To date, several biologics that target specific downstream effector molecules involved in disease pathophysiology have displayed superior efficacy only in patients with T2-high, eosinophilic inflammation, suggesting that upstream mediators of the inflammatory cascade could constitute an attractive therapeutic approach for difficult-to-treat asthma. One such appealing therapeutic target is thymic stromal lymphopoietin (TSLP), an epithelial-derived cytokine with critical functions in allergic diseases, including asthma. Numerous studies in both humans and mice have provided major insights pertinent to the role of TSLP in the initiation and propagation of asthmatic responses. Undoubtedly, the magnitude of TSLP in asthma pathogenesis is highlighted by the fact that the FDA recently approved tezepelumab (Tezspire), a human monoclonal antibody that targets TSLP, for SA treatment. Nevertheless, further research focusing on the biology and mode of function of TSLP in SA will considerably advance disease management.


Assuntos
Asma , Hipersensibilidade , Humanos , Animais , Camundongos , Linfopoietina do Estroma do Timo , Citocinas/genética , Inflamação/tratamento farmacológico
2.
IUBMB Life ; 72(1): 45-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634421

RESUMO

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Fator de Transcrição GATA3/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/citologia , Aorta/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Gônadas/citologia , Gônadas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
3.
J Exp Clin Cancer Res ; 40(1): 295, 2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34548096

RESUMO

BACKGROUND: Although tumor-infiltrating T cells represent a favorable prognostic marker for cancer patients, the majority of these cells are rendered with an exhausted phenotype. Hence, there is an unmet need to identify factors which can reverse this dysfunctional profile and restore their anti-tumorigenic potential. Activin-A is a pleiotropic cytokine, exerting a broad range of pro- or anti-inflammatory functions in different disease contexts, including allergic and autoimmune disorders and cancer. Given that activin-A exhibits a profound effect on CD4+ T cells in the airways and is elevated in lung cancer patients, we hypothesized that activin-A can effectively regulate anti-tumor immunity in lung cancer. METHODS: To evaluate the effects of activin-A in the context of lung cancer, we utilized the OVA-expressing Lewis Lung Carcinoma mouse model as well as the B16F10 melanoma model of pulmonary metastases. The therapeutic potential of activin-A-treated lung tumor-infiltrating CD4+ T cells was evaluated in adoptive transfer experiments, using CD4-/--tumor bearing mice as recipients. In a reverse approach, we disrupted activin-A signaling on CD4+ T cells using an inducible model of CD4+ T cell-specific knockout of activin-A type I receptor. RNA-Sequencing analysis was performed to assess the transcriptional signature of these cells and the molecular mechanisms which mediate activin-A's function. In a translational approach, we validated activin-A's anti-tumorigenic properties using primary human tumor-infiltrating CD4+ T cells from lung cancer patients. RESULTS: Administration of activin-A in lung tumor-bearing mice attenuated disease progression, an effect associated with heightened ratio of infiltrating effector to regulatory CD4+ T cells. Therapeutic transfer of lung tumor-infiltrating activin-A-treated CD4+ T cells, delayed tumor progression in CD4-/- recipients and enhanced T cell-mediated immunity. CD4+ T cells genetically unresponsive to activin-A, failed to elicit effective anti-tumor properties and displayed an exhausted molecular signature governed by the transcription factors Tox and Tox2. Of translational importance, treatment of activin-A on tumor-infiltrating CD4+ T cells from lung cancer patients augmented their immunostimulatory capacity towards autologous CD4+ and CD8+ T cells. CONCLUSIONS: In this study, we introduce activin-A as a novel immunomodulatory factor in the lung tumor microenvironment, which bestows exhausted CD4+ T cells with effector properties.


Assuntos
Ativinas/administração & dosagem , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Imunidade Celular/efeitos dos fármacos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Contagem de Linfócitos , Transferência Adotiva , Animais , Biomarcadores , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Suscetibilidade a Doenças , Regulação Neoplásica da Expressão Gênica , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Humanos , Imunofenotipagem , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Transgênicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA