RESUMO
Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3µAcm-2of TiO2to approximately 16.3µAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.
RESUMO
Many ion channels, both selective and nonselective, have reentrant pore loops that contribute to the architecture of the permeation pathway. It is a fundamental feature of these diverse channels, regardless of whether they are gated by changes of membrane potential or by neurotransmitters, and is critical to function of the channel. Misfolding of the pore loop leads to loss of trafficking and expression of these channels on the cell surface. Mature tetrameric potassium channels contain an α-helix within the pore loop. We systematically mutated the "pore helix" residues of the channel Kv1.3 and assessed the ability of the monomer to fold into a tertiary reentrant loop. Our results show that pore loop residues form a canonical α-helix in the monomer early in biogenesis and that disruption of tertiary folding is caused by hydrophilic substitutions only along one face of this α-helix. These results provide insight into the determinants of the reentrant pore conformation, which is essential for ion channel function.
Assuntos
Canais de Potássio/biossíntese , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Canais de Potássio/química , Estrutura Terciária de Proteína , Homologia de Sequência de AminoácidosRESUMO
This study investigates the role of carrier concentration in semiconducting piezoelectric single-nanowire nanogenerators (SNWNGs) and piezotronic devices. Unintentionally doped and Si-doped GaN nanowire arrays with various carrier concentrations, ranging from 10(17) (unintentionally doped) to 10(19) cm(-3) (heavily doped), are synthesized. For SNWNGs, the output current of individual nanowires starts from a negligible level and rises to the maximum of ≈50 nA at a doping concentration of 5.63 × 10(18) cm(-3) and then falls off with further increase in carrier concentration, due to the competition between the reduction of inner resistance and the screening effect on piezoelectric potential. For piezotronic applications, the force sensitivity based on the change of the Schottky barrier height works best for unintentionally doped nanowires, reaching 26.20 ± 1.82 meV nN(-1) and then decreasing with carrier concentration. Although both types of devices share the same Schottky diode, they involve different characteristics in that the slope of the current-voltage characteristics governs SNWNG devices, while the turn-on voltage determines piezotronic devices. It is demonstrated that free carriers in piezotronic materials can influence the slope and turn-on voltage of the diode characteristics concurrently when subjected to strain. This work offers a design guideline for the optimum doping concentration in semiconductors for obtaining the best performance in piezotronic devices and SNWNGs.
RESUMO
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
RESUMO
A type II GaSb quantum ring solar cell is fabricated and measured under the concentrated sunlight. The external quantum efficiency confirms the extended absorption from the quantum rings at long wavelength coinciding with the photoluminescence results. The short-circuit current of the quantum ring devices is 5.1% to 9.9% more than the GaAs reference's under various concentrations. While the quantum ring solar cell does not exceed its GaAs counterpart in efficiency under one-sun, the recovery of the open-circuit voltages at higher concentration helps to reverse the situation. A slightly higher efficiency (10.31% vs. 10.29%) is reported for the quantum ring device against the GaAs one.
RESUMO
In this study, the design and fabrication schemes of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes are presented. Compared to typical front-side illuminated solar cells, the improvements of open-circuit voltage (V(oc)) from 1.88 to 1.94 V and short-circuit current density (J(sc)) from 0.84 to 1.02 mA/cm(2) are observed. Most significantly, the back-side illuminated InGaN/GaN solar cells exhibit an extremely high fill factor up to 85.5%, leading to a conversion efficiency of 1.69% from 0.66% of typical front-side illuminated solar cells under air mass 1.5 global illuminations. Moreover, the effects of bottom Bragg mirrors on the photovoltaic characteristics of back-side illuminated solar cells are studied by an advanced simulation program. The results show that the J(sc) could further be improved with a factor of 10% from the original back-side illuminated solar cell by the structure optimization of bottom Bragg mirrors.
RESUMO
The generation of guided acoustic phonons in the GHz range in GaN/AlN superlattices grown atop a GaN nanowire is presented. Combined with a femtosecond laser, ultrafast pump-probe spectroscopy allows the generation and detection of guided acoustic phonons at different frequencies in the nanowire superlattices. The capability of the nanowire superlattices to be excellent detectors of acoustic phonons at specific frequencies is then used to observe the strong dispersion, as a result of nanoconfinement, of guided acoustic phonons after their propagation in the nanowire. The generation of high frequency coherent guided acoustic phonons could be useful not only to realize an acoustic transducer with a nanolateral size but also as a source to understand the thermal behavior of nanowires.
RESUMO
This study evaluates the effect of crystallinity and point defects on time-dependent photoresponsivity and the cathodoluminescence (CL) properties of ß-Ga2O3 epilayers. A synchrotron high-resolution X-ray technique was used to understand the crystalline structure of samples. Rutherford backscattering spectroscopy was used to determine the net chemical composition of the samples to examine the type and ratio of their possible point defects. The results show that in functional time-dependent photoresponsivity of photodetectors based on ß-Ga2O3 epilayers, point defects contribution overcomes the contribution of crystallinity. However, the crystalline structure affects the intensities and emission regions of CL spectra more than point defects.
RESUMO
Femtosecond pump probe spectroscopy experiments were carried out to observe extensional modes of GaN nanorods. Different orders of extensional modes were generated and observed following the absorption of femtosecond light pulses. This observation confirms that with a diameter on the order of 100 nm, no mechanical change is expected compared to bulk GaN. We propose and demonstrate that the detection of these modes is achieved through the modulation of the Fabry-Pérot cavity formed by the nanorod array. The extensional modes change the nanorods length and thus modify the reflectivity of the rod-array cavity.
Assuntos
Gálio/química , Interferometria/métodos , Nanotubos/química , Análise Espectral/métodos , Teste de Materiais/métodosRESUMO
The slow light sensor techniques have been applied to bio-related detection in the past decades. However, similar testing-systems are too large to carry to a remote area for diagnosis or point-of-care testing. This study demonstrated a fully automatic portable biosensing system based on the microring resonator. An optical-fiber array mounted on a controller based micro-positioning system, which can be interfaced with MATLAB to locate a tentative position for light source and waveguide coupling alignment. Chip adapter and microfluidic channel could be packaged as a product such that it is cheap to be manufactured and can be disposed of after every test conducted. Thus, the platform can be more easily operated via an ordinary user without expertise in photonics. It is designed based on conventional optical communication wavelength range. The C-band superluminescent-light-emitting-diode light source couples in/out the microring sensor to obtain quasi-TE mode by grating coupler techniques. For keeping a stable chemical binding reaction, the cost-effective microfluidic pump was developed to offer a specific flow rate of 20 µL/min by using a servo-motor, an Arduino board, and a motor driver. The subwavelength grating metamaterial ring resonator shows highly sensitive sensing performance via surface index changes due to biomarker adhered on the sensor. The real-time peak-shift monitoring shows 10 µg/mL streptavidin detection of limit based on the biotin-streptavidin binding reaction. Through the different specific receptors immobilized on the sensor surface, the system can be utilized on the open applications such as heavy metal detection, gas sensing, virus examination, and cancer marker diagnosis.
Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Óptica e FotônicaRESUMO
Antimonene is a promising two-dimensional (2D) material that is calculated to have a significant fundamental bandgap usable for advanced applications such as field-effect transistors, photoelectric devices, and the quantum-spin Hall (QSH) state. Herein, we demonstrate a phenomenon termed topological proximity effect, which occurs between a 2D material and a three-dimensional (3D) topological insulator (TI). We provide strong evidence derived from hydrogen etching on Sb2Te3 that large-area and well-ordered antimonene presents a 2D topological state. Delicate analysis with a scanning tunneling microscope of the evolutionary intermediates reveals that hydrogen etching on Sb2Te3 resulted in the formation of a large area of antimonene with a buckled structure. A topological state formed in the antimonene/Sb2Te3 heterostructure was confirmed with angle-resolved photoemission spectra and density-functional theory calculations; in particular, the Dirac point was located almost at the Fermi level. The results reveal that Dirac fermions are indeed realized at the interface of a 2D normal insulator (NI) and a 3D TI as a result of strong hybridization between antimonene and Sb2Te3. Our work demonstrates that the position of the Dirac point and the shape of the Dirac surface state can be tuned by varying the energy position of the NI valence band, which modifies the direction of the spin texture of Sb-BL/Sb2Te3 via varying the Fermi level. This topological phase in 2D-material engineering has generated a paradigm in that the topological proximity effect at the NI/TI interface has been realized, which demonstrates a way to create QSH systems in 2D-material TI heterostructures.
RESUMO
We report the synthesis, fabrication and extensive characterization of a visible-blind photodetector based on p-i-n junction GaN nanowire ensembles. The nanowires were grown by plasma-assisted molecular beam epitaxy on an n-doped Si(111) substrate, encapsulated into a spin-on-glass and processed using dry etching and metallization techniques. The detector presents a high peak responsivity of 0.47 A W(-1) at - 1 V. The spectral response of the detector is restricted to the UV range with a UV-to-visible rejection ratio of 2 x 10(2). The dependence on the incident power and the operation speed of the photodetector are discussed.
RESUMO
An effective-area photovoltaic efficiency of 1.27% in power conversion, excluding the grid metal contact area and under 1 sun, AM 1.5G conditions, has been obtained for the p-GaN/i-InGaN/n-GaN diode arrays epitaxially grown on (111)-Si. The short-circuit current density is 14.96 mA/cm2 and the open-circuit voltage is 0.28 V. Enhanced light trapping acquired via multiple reflections within the strain and defect free III-nitride nanorod array structures and the short-wavelength responses boosted by the wide bandgap III-nitride constituents are believed to contribute to the observed enhancements in device performance.
RESUMO
Two-dimensional (2D) topological insulators (TIs) have attracted a lot of attention owing to their striking optical nonlinearity. However, the ultra-low saturable intensity (SI) of TIs resulting from the bulk conduction band limits their applications, such as in mode-locking solid-state lasers. In this work, through fabricating a graphene/Bi2Te3 heterojunction which combines monolayer graphene and a Bi2Te3 nanoplate, the optical nonlinearities are analyzed. Moreover, the thickness-dependent characteristics are also investigated by varying the thickness of the Bi2Te3 when synthesizing the heterojunctions. Furthermore, with the aid of the estimated junction electron escape time, a model of the photo-excited carrier-transfer mechanism is proposed and used to describe the phenomena of depression of ultra-low saturable absorption (SA) from the Bi2Te3 bulk band. The increased modulation depth of the graphene/Bi2Te3 heterojunction can accordingly be realized in more detail. In addition, a Q-switched solid-state laser operating at 1064 nm with heterojunction saturable absorbers is built up and characterized for validating the proposed model. The laser performance with varied Bi2Te3 thickness, such as pulse duration and repetition rate, agrees quite well with our proposed model. Our work demonstrates the functionality of optical nonlinear engineering by tuning the thickness of the graphene/Bi2Te3 heterojunction and demonstrates its potential for applications.
RESUMO
We report a direct determination of the specular scattering probability of acoustic phonons at a crystal boundary by observing the escape of incident coherent phonons from the coherent state during reflection. In the sub-THz frequency range where the phonon wavelength is much longer than the lattice constant, the acoustic phonon-interface interaction is found to agree well with the macroscopic theory on wave scattering from rough surfaces. This examination thus quantitatively verifies the dominant role of atomic-scale corrugations in the Kapitza anomaly observed at 1-10 K and further opens a new path to nondestructively estimate subnanoscale roughness of buried interfaces.
RESUMO
Mode volume overlap factor is one of the parameters determining the sensitivity of a sensor. In past decades, many approaches have been proposed to increase the mode volume overlap. As the increased mode volume overlap factor results in reduced mode confinement, the maximum value is ultimately determined by the micro- and nano-structure of the refractive index distribution of the sensing devices. Due to the asymmetric index profile along the vertical direction on silicon-on-insulator platform, further increasing the sensitivity of subwavelength grating metamaterial (SGM) waveguide based sensors is challenging. In this paper, we propose and demonstrate pedestaled SGM which reduces the asymmetricity and thus allows further increasing the interaction between optical field and analytes. The pedestal structure can be readily formed by a controlled undercut etching. Both theoretical analysis and experimental demonstration show a significant improvement of sensitivity. The bulk sensitivity and surface sensitivity are improved by 28.8% and 1000 times, respectively. The detection of streptavidin at a low concentration of 0.1â¯ng/mL (â¼1.67 pM) is also demonstrated through real-time monitoring of the resonance shift. A â¼400â¯fM streptavidin limit of detection is expected with a 0.01nm resolution spectrum analyzer based on the real-time measurement of streptavidin detection results from two-site binding model fitting.
Assuntos
Técnicas Biossensoriais/instrumentação , Refratometria/instrumentação , Algoritmos , Desenho de Equipamento , Silício/química , Estreptavidina/análiseRESUMO
The T1 recognition domains of voltage-gated K(+) (Kv) channel subunits form tetramers and acquire tertiary structure while still attached to their individual ribosomes. Here we ask when and in which compartment secondary and tertiary structures are acquired. We answer this question using biogenic intermediates and recently developed folding and accessibility assays to evaluate the status of the nascent Kv peptide both inside and outside of the ribosome. A compact structure (likely helical) that corresponds to a region of helicity in the mature structure is already manifest in the nascent protein within the ribosomal tunnel. The T1 domain acquires tertiary structure only after emerging from the ribosomal exit tunnel and complete synthesis of the T1-S1 linker. These measurements of ion channel folding within the ribosomal tunnel and its exit port bear on basic principles of protein folding and pave the way for understanding the molecular basis of protein misfolding, a fundamental cause of channelopathies.
Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Dobramento de Proteína , Processamento de Proteína Pós-Traducional/fisiologia , Subunidades Proteicas/química , Ribossomos/fisiologia , Sequência de Aminoácidos , Animais , Canal de Potássio Kv1.3 , Dados de Sequência Molecular , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/fisiologia , Homologia de SequênciaRESUMO
Proteins begin to fold in the ribosome, and misfolding has pathological consequences. Among the earliest folding events in biogenesis is the formation of a helix, an elementary structure that is ubiquitously present and required for correct protein folding in all proteomes. The determinants underlying helix formation in the confined space of the ribosome exit tunnel are relatively unknown. We chose the second transmembrane segment, S2, of a voltage-gated potassium channel, Kv1.3, as a model to probe this issue. Since the N terminus of S2 is initially in an extended conformation in the folding vestibule of the ribosome yet ultimately emerges at the exit port as a helix, S2 is ideally suited for delineating sequential events and folding determinants of helix formation inside the ribosome. We show that S2's extended N terminus inside the tunnel is converted into a helix by a single, distant mutation in the nascent peptide. This transition depends on nascent peptide sequence at specific tunnel locations. Co-translational secondary folding of nascent chains inside the ribosome has profound physiological consequences that bear on correct membrane insertion, tertiary folding, oligomerization, and biochemical modification of the newborn protein during biogenesis.
Assuntos
Canal de Potássio Kv1.3/biossíntese , Canal de Potássio Kv1.3/química , Dobramento de Proteína , Ribossomos/metabolismo , Conformação Proteica em alfa-HéliceRESUMO
In this report, ferromagnetic interactions in modulation-doped GaMnN nanorods grown on Si (111) substrate by plasma-assisted molecular beam epitaxy are investigated with the prospect of achieving a room temperature ferromagnetic semiconductor. Our results indicate the thickness of GaN layer in each GaN/MnN pair, as well as Mn-doping levels, are essential for suppressing secondary phases as well as enhancing the magnetic moment. For these optimized samples, structural analysis by high-resolution X-ray diffractometry and Raman spectroscopy verifies single-crystalline modulation-doped GaMnN nanorods with Ga sites substituted by Mn atoms. Energy dispersive X-ray spectrometry shows that the average Mn concentration can be raised from 0.4 to 1.8% by increasing Mn fluxes without formation of secondary phases resulted in a notable enhancement of the saturation magnetization as well as coercive force in these nanorods.
RESUMO
All proteins are synthesized by the ribosome, a macromolecular complex that accomplishes the life-sustaining tasks of faithfully decoding mRNA and catalyzing peptide bond formation at the peptidyl transferase center (PTC). The ribosome has evolved an exit tunnel to host the elongating new peptide, protect it from proteolytic digestion, and guide its emergence. It is here that the nascent chain begins to fold. This folding process depends on the rate of translation at the PTC. We report here that besides PTC events, translation kinetics depend on steric constraints on nascent peptide side chains and that confined movements of cramped side chains within and through the tunnel fine-tune elongation rates.