Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38049376

RESUMO

Hybrid natural products are compounds that originate from diverse biosynthetic pathways and undergo a conjugation process, which enables them to expand their chemical diversity and biological functionality. Terpene-amino acid meroterpenoids have garnered increasing attention in recent years, driven by the discovery of noteworthy examples such as the anthelmintic CJ-12662, the insecticidal paeciloxazine, and aculene A (1). In the biosynthesis of terpene-amino acid natural products, single-module nonribosomal peptide synthetases (NRPSs) have been identified to be involved in the esterification step, catalyzing the fusion of modified terpene and amino acid components. Despite prior investigations into these NRPSs through gene deletion or in vivo experiments, the enzymatic basis and mechanistic insights underlying this family of single-module NRPSs remain unclear. In this study, we performed biochemical characterization of AneB by in vitro characterization, molecular docking, and site-directed mutagenesis. The enzyme reaction analyses, performed with L-proline and daucane/nordaucane sesquiterpene substrates, revealed that AneB specifically esterifies the C10-OH of aculenes with L-proline. Notably, in contrast to ThmA in CJ-12662 biosynthesis, which exclusively recognizes oxygenated amorpha-4,11-diene sesquiterpenes for L-tryptophan transfer, AneB demonstrates broad substrate selectivity, including oxygenated amorpha-4,11-diene and 2-phenylethanol, resulting in the production of diverse unnatural prolyl compounds. Furthermore, site-directed mutagenesis experiments indicated the involvement of H794 and D798 in the esterification catalyzed by AneB. Lastly, domain swapping between AneB and ThmA unveiled that the A‒T domains of ThmA can be effectively harnessed by the C domain of AneB for L-tryptophan transfer, thus highlighting the potential of the C domain of AneB for generating various terpene-amino acid meroterpenoid derivatives. ONE-SENTENCE SUMMARY: The enzymatic basis and mechanistic insights into AneB, a single-module NRPS, highlight its capacity to generate various terpene-amino acid meroterpenoid derivatives.


Assuntos
Aminoácidos , Produtos Biológicos , Simulação de Acoplamento Molecular , Terpenos , Triptofano , Peptídeo Sintases/metabolismo , Catálise , Prolina
2.
J Org Chem ; 86(1): 892-916, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33320008

RESUMO

Synthesis of type I LacNAc (Galß1 → 3GlcNAc) oligosaccharides usually suffers from low yields. We herein report the efficient synthesis of type I LacNAc oligosaccharides by chemoselective glycosylation. With 16 relative reactivity values (RRVs) measured thiotoluenyl-linked disaccharide donors and acceptors, chemoselective glycosylations were investigated to obtain optimal conditions. In these reactions, the RRV difference between the donors and acceptors had to be more than 6311 to obtain type I LacNAc tetrasaccharides in 72-86% yields, with minimal occurrence of aglycon transfer. The threshold of RRV difference was further applied to plan the synthesis of longer glycans. Because it is challenging to measure the RRVs of tetrasaccharides, anomeric proton chemical shifts were utilized to predict the corresponding RRVs, which consequently explained the outcome of glycosylations for the synthesis of type I LacNAc hexasaccharides. The result supported the idea that elongation of glycan chains has to proceed from the reducing to the nonreducing end for a better yield.

3.
Int J Mol Sci ; 19(2)2018 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-29382172

RESUMO

Galectins are ß-galactoside-binding proteins. As carbohydrate-binding proteins, they participate in intracellular trafficking, cell adhesion, and cell-cell signaling. Accumulating evidence indicates that they play a pivotal role in numerous physiological and pathological activities, such as the regulation on cancer progression, inflammation, immune response, and bacterial and viral infections. Galectins have drawn much attention as targets for therapeutic interventions. Several molecules have been developed as galectin inhibitors. In particular, TD139, a thiodigalactoside derivative, is currently examined in clinical trials for the treatment of idiopathic pulmonary fibrosis. Herein, we provide an in-depth review on the development of galectin inhibitors, aiming at the dissection of the structure-activity relationship to demonstrate how inhibitors interact with galectin(s). We especially integrate the structural information established by X-ray crystallography with several biophysical methods to offer, not only in-depth understanding at the molecular level, but also insights to tackle the existing challenges.


Assuntos
Galectinas/química , Relação Quantitativa Estrutura-Atividade , Animais , Sítios de Ligação , Galectinas/antagonistas & inibidores , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Tiogalactosídeos/química , Tiogalactosídeos/farmacologia
4.
Anal Chem ; 87(12): 6380-8, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26016788

RESUMO

We have previously developed the enabling techniques for sulfoglycomics based on mass spectrometry (MS) analysis of permethylated glycans, which preserves the attractive features of more reliable MS/MS sequencing compared with that performed on native glycans, while providing an easy way to separate and hence enrich the sulfated glycans. Unlike LC-MS/MS analysis of native glycans in negative ion mode that has been more widely in use, the characteristics and potential benefits of similar applications based on permethylated sulfated glycans have not been fully investigated. We report here the important features of reverse phase-based nanoLC-MS/MS analysis of permethylated sulfated glycans in negative ion mode and demonstrate that complementary sets of diagnostic fragment ions afforded can allow rapid identification of various fucosylated, sialylated, sulfated glycotopes and definitive determination of the location of sulfate in a way difficult to achieve by other means. A parallel acquisition of both higher collision energy and trap-based MS(2) coupled with a product dependent MS(3) is conceivably the most productive sulfoglycomic workflow currently possible and the manually curated fragmentation characteristics presented here will allow future developments in automating data analysis.


Assuntos
Nanotecnologia , Polissacarídeos/análise , Sulfatos/química , Cromatografia Líquida de Alta Pressão , Íons/química , Espectrometria de Massas em Tandem
5.
J Proteome Res ; 13(8): 3523-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25055207

RESUMO

Protein serotonylation is a transglutaminase-mediated phenomenon whose biological mechanism of protein serotonylation is not yet fully understood, as the complete profiling of serotonylation targets in a proteome remains a critical challenge to date. Utilizing an alkyne-functionalized serotonin derivative bioorthogonally coupled to a cleavable linker, we developed a method to selectively enrich serotonylated proteins in a complex sample. With online nanoflow liquid chromatography and LTQ-Orbitrap Velos hybrid mass spectrometer detection, we identified 46 proteins with 50 serotonylation sites at their glutamine residues. Mass spectrometric analysis also generated direct residue-level evidence of various biological processes such as transglutaminase-chaperon interactions as well as actin assembly. An enrichment workflow utilizing click chemistry and on-bead digestion allowed us to achieve site-specific identification of protein serotonylation by mass spectrometry, and results obtained hereby also provided a great foundation in the elucidation of the true roles of protein serotonylation in biological systems.


Assuntos
Proteínas/metabolismo , Proteômica/métodos , Serotonina/metabolismo , Transdução de Sinais/fisiologia , Cromatografia Líquida/métodos , Química Click , Glutamina/metabolismo , Espectrometria de Massas/métodos , Coloração e Rotulagem
6.
Chem Soc Rev ; 42(10): 4459-75, 2013 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-23588106

RESUMO

L-Fucose-containing glycoconjugates are essential for a myriad of physiological and pathological activities, such as inflammation, bacterial and viral infections, tumor metastasis, and genetic disorders. Fucosyltransferases and fucosidases, the main enzymes involved in the incorporation and cleavage of L-fucose residues, respectively, represent captivating targets for therapeutic treatment and diagnosis. We herein review the important breakthroughs in the development of fucosyltransferase and fucosidase inhibitors. To demonstrate how the synthesized small molecules interact with the target enzymes, i.e. delineation of the structure-activity relationship, we cover the reaction mechanisms and resolved X-ray crystal structures, discuss how this information guides the design of enzyme inhibitors, and explain how the molecules were optimized to achieve satisfying potency and selectivity.


Assuntos
Fucosiltransferases/antagonistas & inibidores , alfa-L-Fucosidase/antagonistas & inibidores , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/síntese química , 1-Desoxinojirimicina/química , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fucosiltransferases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Nucleotídeos/síntese química , Nucleotídeos/química , Relação Estrutura-Atividade , Especificidade por Substrato , alfa-L-Fucosidase/metabolismo
7.
Chem Commun (Camb) ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258496

RESUMO

Synthesis of Galß1 → 3GlcNAc-repeating saccharides is limited mainly by the formation of less-reactive oxazolines. We herein report an expeditious approach that requires trichloroacetyloxazolines as reactive glycosyl donors. Using only two disaccharide building blocks, the iterative oxazoline formation and glycosylation synthesized hexa- and octasaccharides with overall yields of 47% and 26% in four and six steps, respectively.

8.
J Immunol ; 187(4): 1643-52, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21753146

RESUMO

Galectin (Gal) family members are a type of soluble lectin, and they play important roles in immunomodulation. Their redundant roles have been proposed. We previously found that Gal-1 promotes the formation of Ab-secreting plasma cells, but B cells from Gal-1-deficient and control animals produce comparable amounts of Abs. In the current study, we used synthetic sulfomodified N-acetyllactosamine (LacNAc) analogs and short hairpin RNAs for Gal-8 to demonstrate a redundancy in the effects of Gal-1 and Gal-8 on plasma cell formation. Gal-1 and Gal-8 were both expressed during plasma cell differentiation, and both Gals promoted the formation of plasma cells. Gal-1 and Gal-8 bound better to mature B cells than to plasma cells, and the expression of glycosyltransferase enzymes changed during differentiation, with a decrease in mannosyl (α-1,6-)-glycoprotein ß-1,6-N-acetyl-glucosaminyltransferase and N-acetylglucosaminyltransferase-1 mRNAs in plasma cells. Synthetic sulfomodified Galß1-3GlcNAc disaccharides (type 1 LacNAcs) selectively prevented Gal-8 binding, leading to a blockade of Ab production in Gal-1-deficient B cells. Furthermore, synthetic type 1 LacNAcs that were able to block the binding of both Gals greatly reduced the effect of exogenously added recombinant Gal-1 and Gal-8 on promoting Ab production. These results reveal a novel role for Gal-8 in collaboration with Gal-1 in plasma cell formation, and suggest the possibility of using distinct LacNAc ligands to modulate the function of Gals.


Assuntos
Galectina 1/imunologia , Galectinas/imunologia , Plasmócitos/imunologia , Amino Açúcares/imunologia , Amino Açúcares/farmacologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Formação de Anticorpos/genética , Formação de Anticorpos/imunologia , Galectina 1/genética , Galectinas/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Knockout , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia
9.
mBio ; 14(5): e0137923, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830798

RESUMO

IMPORTANCE: Cross-linking reaction of Braun's lipoprotein (Lpp) to peptidoglycan (PG) is catalyzed by some members of the YkuD family of transpeptidases. However, the exact opposite reaction of cleaving the Lpp-PG cross-link is performed by DpaA, which is also a YkuD-like protein. In this work, we determined the crystal structure of DpaA to provide the molecular rationale for the ability of the transpeptidase-like protein to cleave, rather than form, the Lpp-PG linkage. Our findings also revealed the structural features that distinguish the different functional types of the YkuD family enzymes from one another.


Assuntos
Peptidil Transferases , Peptidil Transferases/metabolismo , Peptidoglicano/metabolismo , Parede Celular/metabolismo , Lipoproteínas/metabolismo
10.
Viruses ; 14(2)2022 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-35215921

RESUMO

An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China, has created a public health emergency all over the world. The pandemic has caused more than 340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates have been found to play a role in coronavirus binding and infection, the role of cell surface glycans in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1 subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein. Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1 subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit and ACE2.


Assuntos
Carboidratos/química , SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/virologia , Carboidratos/genética , China , Eritrócitos/metabolismo , Humanos , Ligantes , Polissacarídeos , Análise Serial de Proteínas , Ligação Proteica , SARS-CoV-2/metabolismo , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA