RESUMO
Upon infection, HIV disseminates throughout the human body within 1-2 weeks. However, its early cellular targets remain poorly characterized. We used a single-cell approach to retrieve the phenotype and TCR sequence of infected cells in blood and lymphoid tissue from individuals at the earliest stages of HIV infection. HIV initially targeted a few proliferating memory CD4+ T cells displaying high surface expression of CCR5. The phenotype of productively infected cells differed by Fiebig stage and between blood and lymph nodes. The TCR repertoire of productively infected cells was heavily biased, with preferential infection of previously expanded and disseminated clones, but composed almost exclusively of unique clonotypes, indicating that they were the product of independent infection events. Latent genetically intact proviruses were already archived early in infection. Hence, productive infection is initially established in a pool of phenotypically and clonotypically distinct T cells, and latently infected cells are generated simultaneously.
Assuntos
Infecções por HIV , HIV-1 , Infecção Latente , Humanos , Linfócitos T CD4-Positivos/metabolismo , HIV-1/genética , Infecção Latente/metabolismo , Infecção Latente/patologia , Receptores de Antígenos de Linfócitos T/metabolismo , Latência ViralRESUMO
Productively infected cells are generally thought to arise from HIV infection of activated CD4+ T cells, and these infected activated cells are thought to be a recurring source of latently infected cells when a portion of the population transitions to a resting state. We discovered and report here that productively and latently infected cells can instead originate from direct infection of resting CD4+ T cell populations in lymphoid tissues in Fiebig I, the earliest stage of detectable HIV infection. We found that direct infection of resting CD4+ T cells was correlated with the availability of susceptible target cells in lymphoid tissues largely restricted to resting CD4+ T cells in which expression of pTEFb enabled productive infection, and we documented persistence of HIV-producing resting T cells during antiretroviral therapy (ART). Thus, we provide evidence of a mechanism by which direct infection of resting T cells in lymphoid tissues to generate productively and latently infected cells creates a mechanism by which the productively infected cells can replenish both populations and maintain two sources of virus from which HIV infection can rebound, even if ART is instituted at the earliest stage of detectable infection.