Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 317(4): G373-G386, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31373507

RESUMO

Although steatosis (fatty liver) is a clinically well-described early stage of alcoholic liver disease, surprisingly little is known about how it promotes hepatotoxicity. We have shown that ethanol consumption leads to microtubule hyperacetylation that can explain ethanol-induced defects in protein trafficking. Because almost all steps of the lipid droplet life cycle are microtubule dependent and because microtubule acetylation promotes adipogenesis, we examined droplet dynamics in ethanol-treated cells. In WIF-B cells treated with ethanol and/or oleic acid (a fatty acid associated with the "Western" diet), we found that ethanol dramatically increased lipid droplet numbers and led to the formation of large, peripherally located droplets. Enhanced droplet formation required alcohol dehydrogenase-mediated ethanol metabolism, and peripheral droplet distributions required intact microtubules. We also determined that ethanol-induced microtubule acetylation led to impaired droplet degradation. Live-cell imaging revealed that droplet motility was microtubule dependent and that droplets were virtually stationary in ethanol-treated cells. To determine more directly whether microtubule hyperacetylation could explain impaired droplet motility, we overexpressed the tubulin-specific acetyltransferase αTAT1 to promote microtubule acetylation in the absence of alcohol. Droplet motility was impaired in αTAT1-expressing cells but to a lesser extent than in ethanol-treated cells. However, in both cases, the large immotile droplets (but not small motile ones) colocalized with dynein and dynactin (but not kinesin), implying that altered droplet-motor microtubule interactions may explain altered dynamics. These studies further suggest that modulating cellular acetylation is a potential strategy for treating alcoholic liver disease.NEW & NOTEWORTHY Chronic alcohol consumption with the "Western diet" enhances the development of fatty liver and leads to impaired droplet motility, which may have serious deletrious effects on hepatocyte function.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Acetilação , Acetiltransferases/metabolismo , Álcool Desidrogenase/metabolismo , Linhagem Celular , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Humanos , Proteínas dos Microtúbulos/metabolismo , Ácidos Oleicos/farmacologia
2.
Am J Physiol Gastrointest Liver Physiol ; 313(6): G558-G569, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864499

RESUMO

The liver metabolizes alcohol using alcohol dehydrogenase (ADH) and cytochrome P450 2E1 (CYP2E1). Both enzymes metabolize ethanol into acetaldehyde, but CYP2E1 activity also results in the production of reactive oxygen species (ROS) that promote oxidative stress. We have previously shown that microtubules are hyperacetylated in ethanol-treated polarized, hepatic WIF-B cells and livers from ethanol-fed rats. We have also shown that enhanced protein acetylation correlates with impaired clathrin-mediated endocytosis, constitutive secretion, and nuclear translocation and that the defects are likely mediated by acetaldehyde. However, the roles of CYP2E1-generated metabolites and ROS in microtubule acetylation and these alcohol-induced impairments have not been examined. To determine if CYP2E1-mediated alcohol metabolism is required for enhanced acetylation and the trafficking defects, we coincubated cells with ethanol and diallyl sulfide (DAS; a CYP2E1 inhibitor) or N-acetyl cysteine (NAC; an antioxidant). Both agents failed to prevent microtubule hyperacetylation in ethanol-treated cells and also failed to prevent impaired secretion or clathrin-mediated endocytosis. Somewhat surprisingly, both DAS and NAC prevented impaired STAT5B nuclear translocation. Further examination of microtubule-independent steps of the pathway revealed that Jak2/STAT5B activation by growth hormone was prevented by DAS and NAC. These results were confirmed in ethanol-exposed HepG2 cells expressing only ADH or CYP2E1. Using quantitative RT-PCR, we further determined that ethanol exposure led to blunted growth hormone-mediated gene expression. In conclusion, we determined that alcohol-induced microtubule acetylation and associated defects in microtubule-dependent trafficking are mediated by ADH metabolism whereas impaired microtubule-independent Jak2/STAT5B activation is mediated by CYP2E1 activity.NEW & NOTEWORTHY Impaired growth hormone-mediated signaling is observed in ethanol-exposed hepatocytes and is explained by differential effects of alcohol dehydrogenase (ADH)- and cytochrome P450 2E1 (CYP2E1)-mediated ethanol metabolism on the Jak2/STAT5B pathway.


Assuntos
Álcool Desidrogenase/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Etanol/metabolismo , Hormônio do Crescimento/metabolismo , Fígado/enzimologia , Acetaldeído/metabolismo , Acetilação , Animais , Antioxidantes/farmacologia , Biotransformação , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Endocitose , Etanol/toxicidade , Hormônio do Crescimento/genética , Células Hep G2 , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Fígado/efeitos dos fármacos , Proteínas dos Microtúbulos/metabolismo , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais
3.
Am J Physiol Gastrointest Liver Physiol ; 310(11): G930-40, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27056722

RESUMO

Alcohol consumption exacerbates hepatitis C virus (HCV) pathogenesis and promotes disease progression, although the mechanisms are not quite clear. We have previously observed that acetaldehyde (Ach) continuously produced by the acetaldehyde-generating system (AGS), temporarily enhanced HCV RNA levels, followed by a decrease to normal or lower levels, which corresponded to apoptosis induction. Here, we studied whether Ach-induced apoptosis caused depletion of HCV-infected cells and what role apoptotic bodies (AB) play in HCV-alcohol crosstalk. In liver cells exposed to AGS, we observed the induction of miR-122 and miR-34a. As miR-34a has been associated with apoptotic signaling and miR-122 with HCV replication, these findings may suggest that cells with intensive viral replication undergo apoptosis. Furthermore, when AGS-induced apoptosis was blocked by a pan-caspase inhibitor, the expression of HCV RNA was not changed. AB from HCV-infected cells contained HCV core protein and the assembled HCV particle that infect intact hepatocytes, thereby promoting the spread of infection. In addition, AB are captured by macrophages to switch their cytokine profile to the proinflammatory one. Macrophages exposed to HCV(+) AB expressed more IL-1ß, IL-18, IL-6, and IL-10 mRNAs compared with those exposed to HCV(-) AB. The generation of AB from AGS-treated HCV-infected cells even enhanced the induction of aforementioned cytokines. We conclude that HCV and alcohol metabolites trigger the formation of AB containing HCV particles. The consequent spread of HCV to neighboring hepatocytes via infected AB, as well as the induction of liver inflammation by AB-mediated macrophage activation potentially exacerbate the HCV infection course by alcohol and worsen disease progression.


Assuntos
Acetaldeído/metabolismo , Apoptose , Hepacivirus/fisiologia , Hepatócitos/metabolismo , Replicação Viral , Linhagem Celular , Células Cultivadas , Hepacivirus/patogenicidade , Hepatócitos/virologia , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo
4.
Alcohol Clin Exp Res ; 40(11): 2329-2338, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27716962

RESUMO

BACKGROUND: Alcohol consumption exacerbates the pathogenesis of hepatitis C virus (HCV) infection and worsens disease outcomes. The exact reasons are not clear yet, but they might be partially attributed to the ability of alcohol to further suppress the innate immunity. Innate immunity is known to be already decreased by HCV in liver cells. METHODS: In this study, we aimed to explore the mechanisms of how alcohol metabolism dysregulates IFNα signaling (STAT1 phosphorylation) in HCV+ hepatoma cells. To this end, CYP2E1+ Huh7.5 cells were infected with HCV and exposed to the acetaldehyde (Ach) generating system (AGS). RESULTS: Continuously produced Ach suppressed IFNα-induced STAT1 phosphorylation, but increased the level of a protease, USP18 (both measured by Western blot), which interferes with IFNα signaling. Induction of USP18 by Ach was confirmed in primary human hepatocyte cultures and in livers of ethanol-fed HCV transgenic mice. Silencing of USP18 by specific siRNA attenuated the pSTAT1 suppression by Ach. The mechanism by which Ach down-regulates pSTAT1 is related to an enhanced interaction between IFNαR2 and USP18 that finally dysregulates the cross talk between the IFN receptor on the cell surface and STAT1. Furthermore, Ach decreases ISGylation of STAT1 (protein conjugation of a small ubiquitin-like modifier, ISG15, Western blot), which preserves STAT1 activation. Suppressed ISGylation leads to an increase in STAT1 K48 polyubiquitination which allows pSTAT1 degrading by proteasome. CONCLUSIONS: We conclude that Ach disrupts IFNα-induced STAT1 phosphorylation by the up-regulation of USP18 to block the innate immunity protection in HCV-infected liver cells, thereby contributing to HCV-alcohol pathogenesis. This, in part, may explain the mechanism of HCV-infection exacerbation/progression in alcohol-abusing patients.


Assuntos
Acetaldeído/farmacologia , Endopeptidases/metabolismo , Hepatite C/metabolismo , Interferon-alfa/metabolismo , Fígado/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ubiquitina Tiolesterase
5.
Alcohol Clin Exp Res ; 40(11): 2312-2319, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27581622

RESUMO

BACKGROUND: Alcohol-induced reduction in the hepatocellular S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio impairs the activities of many SAM-dependent methyltransferases. These impairments ultimately lead to the generation of several hallmark features of alcoholic liver injury including steatosis. Guanidinoacetate methyltransferase (GAMT) is an important enzyme that catalyzes the final reaction in the creatine biosynthetic process. The liver is a major site for creatine synthesis which places a substantial methylation burden on this organ as GAMT-mediated reactions consume as much as 40% of all the SAM-derived methyl groups. We hypothesized that dietary creatine supplementation could potentially spare SAM, preserve the hepatocellular SAM:SAH ratio, and thereby prevent the development of alcoholic steatosis and other consequences of impaired methylation reactions. METHODS: For these studies, male Wistar rats were pair-fed the Lieber-DeCarli control or ethanol (EtOH) diet with or without 1% creatine supplementation. At the end of 4 to 5 weeks of feeding, relevant biochemical and histological analyses were performed. RESULTS: We observed that creatine supplementation neither prevented alcoholic steatosis nor attenuated the alcohol-induced impairments in proteasome activity. The lower hepatocellular SAM:SAH ratio seen in the EtOH-fed rats was also not normalized or SAM levels spared when these rats were fed the creatine-supplemented EtOH diet. However, a >10-fold increased level of creatine was observed in the liver, serum, and hearts of rats fed the creatine-supplemented diets. CONCLUSIONS: Overall, dietary creatine supplementation did not prevent alcoholic liver injury despite its known efficacy in preventing high-fat-diet-induced steatosis. Betaine, a promethylating agent that maintains the hepatocellular SAM:SAH, still remains our best option for treating alcoholic steatosis.


Assuntos
Creatina/uso terapêutico , Fígado Gorduroso Alcoólico/prevenção & controle , Amidinotransferases/metabolismo , Animais , Suplementos Nutricionais , Guanidinoacetato N-Metiltransferase/metabolismo , Rim/enzimologia , Fígado/enzimologia , Masculino , Miocárdio/metabolismo , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
6.
Am J Physiol Gastrointest Liver Physiol ; 309(7): G566-77, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251470

RESUMO

Alcohol exposure worsens the course and outcomes of hepatitis C virus (HCV) infection. Activation of protective antiviral genes is induced by IFN-α signaling, which is altered in liver cells by either HCV or ethanol exposure. However, the mechanisms of the combined effects of HCV and ethanol metabolism in IFN-α signaling modulation are not well elucidated. Here, we explored a possibility that ethanol metabolism potentiates HCV-mediated dysregulation of IFN-α signaling in liver cells via impairment of methylation reactions. HCV-infected Huh7.5 CYP2E1(+) cells and human hepatocytes were exposed to acetaldehyde (Ach)-generating system (AGS) and stimulated with IFN-α to activate IFN-sensitive genes (ISG) via the Jak-STAT-1 pathway. We observed significant suppression of signaling events by Ach. Ach exposure decreased STAT-1 methylation via activation of protein phosphatase 2A and increased the protein inhibitor of activated STAT-1 (PIAS-1)-STAT-1 complex formation in both HCV(+) and HCV(-) cells, preventing ISG activation. Treatment with a promethylating agent, betaine, attenuated all examined Ach-induced defects. Ethanol metabolism-induced changes in ISGs are methylation related and confirmed by in vivo studies on HCV(+) transgenic mice. HCV- and Ach-induced impairment of IFN signaling temporarily increased HCV RNA levels followed by apoptosis of heavily infected cells. We concluded that Ach potentiates the suppressive effects of HCV on activation of ISGs attributable to methylation-dependent dysregulation of IFN-α signaling. A temporary increase in HCV RNA sensitizes the liver cells to Ach-induced apoptosis. Betaine reverses the inhibitory effects of Ach on IFN signaling and thus can be used for treatment of HCV(+) alcohol-abusing patients.


Assuntos
Acetaldeído/farmacologia , Metilação de DNA/efeitos dos fármacos , Hepacivirus/fisiologia , Hepatócitos/imunologia , Imunidade Inata/efeitos dos fármacos , Animais , Betaína/farmacologia , Linhagem Celular , Etanol/metabolismo , Hepatócitos/virologia , Humanos , Immunoblotting , Imunoprecipitação , Interferon-alfa/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Transfecção
7.
Biochem Biophys Res Commun ; 458(3): 626-631, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25684186

RESUMO

We had previously shown that alcohol consumption can induce cellular isoaspartate protein damage via an impairment of the activity of protein isoaspartyl methyltransferase (PIMT), an enzyme that triggers repair of isoaspartate protein damage. To further investigate the mechanism of isoaspartate accumulation, hepatocytes cultured from control or 4-week ethanol-fed rats were incubated in vitro with tubercidin or adenosine. Both these agents, known to elevate intracellular S-adenosylhomocysteine levels, increased cellular isoaspartate damage over that recorded following ethanol consumption in vivo. Increased isoaspartate damage was attenuated by treatment with betaine. To characterize isoaspartate-damaged proteins that accumulate after ethanol administration, rat liver cytosolic proteins were methylated using exogenous PIMT and (3)H-S-adenosylmethionine and proteins resolved by gel electrophoresis. Three major protein bands of ∼ 75-80 kDa, ∼ 95-100 kDa, and ∼ 155-160 kDa were identified by autoradiography. Column chromatography used to enrich isoaspartate-damaged proteins indicated that damaged proteins from ethanol-fed rats were similar to those that accrued in the livers of PIMT knockout (KO) mice. Carbamoyl phosphate synthase-1 (CPS-1) was partially purified and identified as the ∼ 160 kDa protein target of PIMT in ethanol-fed rats and in PIMT KO mice. Analysis of the liver proteome of 4-week ethanol-fed rats and PIMT KO mice demonstrated elevated cytosolic CPS-1 and betaine homocysteine S-methyltransferase-1 when compared to their respective controls, and a significant reduction of carbonic anhydrase-III (CA-III) evident only in ethanol-fed rats. Ethanol feeding of rats for 8 weeks resulted in a larger (∼ 2.3-fold) increase in CPS-1 levels compared to 4-week ethanol feeding indicating that CPS-1 accumulation correlated with the duration of ethanol consumption. Collectively, our results suggest that elevated isoaspartate and CPS-1, and reduced CA-III levels could serve as biomarkers of hepatocellular injury.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/análise , Anidrase Carbônica III/análise , Doença Hepática Induzida por Substâncias e Drogas/patologia , Ácido Isoaspártico/análise , Fígado/patologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Anidrase Carbônica III/metabolismo , Células Cultivadas , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/genética , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/efeitos adversos , Ácido Isoaspártico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo
8.
Alcohol Clin Exp Res ; 39(12): 2354-63, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26556759

RESUMO

BACKGROUND: Chronic ethanol (EtOH) consumption decelerates the catabolism of long-lived proteins, indicating that it slows hepatic macroautophagy (hereafter called autophagy) a crucial lysosomal catabolic pathway in most eukaryotic cells. Autophagy and lysosome biogenesis are linked. Both are regulated by the transcription factor EB (TFEB). Here, we tested whether TFEB can be used as a singular indicator of autophagic activity, by quantifying its nuclear content in livers of mice subjected to acute and chronic EtOH administration. We correlated nuclear TFEB to specific indices of autophagy. METHODS: In acute experiments, we gavaged GFP-LC3(tg) mice with a single dose of EtOH or with phosphate buffered saline (PBS). We fed mice chronically by feeding them control or EtOH liquid diets. RESULTS: Compared with PBS-gavaged controls, livers of EtOH-gavaged mice exhibited greater autophagosome (AV) numbers, a higher incidence of AV-lysosome co-localization, and elevated levels of free GFP, all indicating enhanced autophagy, which correlated with a higher nuclear content of TFEB. Compared with pair-fed controls, livers of EtOH-fed mice exhibited higher AV numbers, but had lower lysosome numbers, lower AV-lysosome co-localization, higher P62/SQSTM1 levels, and lower free GFP levels. The latter findings correlated with lower nuclear TFEB levels in EtOH-fed mice. Thus, enhanced autophagy after acute EtOH gavage correlated with a higher nuclear TFEB content. Conversely, chronic EtOH feeding inhibited hepatic autophagy, associated with a lower nuclear TFEB content. CONCLUSIONS: Our findings suggest that the effect of acute EtOH gavage on hepatic autophagy differs significantly from that after chronic EtOH feeding. Each regimen distinctly affects TFEB localization, which in turn, regulates hepatic autophagy and lysosome biogenesis.


Assuntos
Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Etanol/administração & dosagem , Etanol/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Animais , Autofagia/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
9.
Adv Exp Med Biol ; 815: 295-311, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25427914

RESUMO

It is well established that alcohol consumption is related to the development of alcoholic liver disease. Additionally, it is appreciated that other major health issues are associated with alcohol abuse, including colorectal cancer (CRC) and its metastatic growth to the liver. Although a correlation exists between alcohol use and the development of diseases, the search continues for a better understanding of specific mechanisms. Concerning the role of alcohol in CRC liver metastases, recent research is aimed at characterizing the processing of carcinoembryonic antigen (CEA), a glycoprotein that is associated with and secreted by CRC cells. A positive correlation exists between serum CEA levels, liver metastasis, and alcohol consumption in CRC patients, although the mechanism is not understood. It is known that circulating CEA is processed primarily by the liver, first by nonparenchymal Kupffer cells (KCs) and secondarily, by hepatocytes via the asialoglycoprotein receptor (ASGPR). Since both KCs and hepatocytes are known to be significantly impacted by alcohol, it is hypothesized that alcohol-related effects to these liver cells will lead to altered CEA processing, including impaired asialo-CEA degradation, resulting in changes to the liver microenvironment and the metastatic potential of CRC cells. Also, it is predicted that CEA processing will affect cytokine production in the alcohol-injured liver, resulting in pro-metastatic changes such as enhanced adhesion molecule expression on the hepatic sinusoidal endothelium. This chapter examines the potential role that alcohol-induced liver cell impairments can have in the processing of CEA and associated mechanisms involved in CEA-related colorectal cancer liver metastasis.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Neoplasias Colorretais/patologia , Etanol/toxicidade , Neoplasias Hepáticas/secundário , Fígado/efeitos dos fármacos , Animais , Assialoglicoproteínas/metabolismo , Humanos , Células de Kupffer/efeitos dos fármacos , Células de Kupffer/metabolismo
10.
Mol Cell Biochem ; 397(1-2): 223-33, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25148871

RESUMO

Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.


Assuntos
Depressores do Sistema Nervoso Central/efeitos adversos , Dineínas/metabolismo , Etanol/efeitos adversos , Fígado/metabolismo , Transcitose/efeitos dos fármacos , Animais , Linhagem Celular , Depressores do Sistema Nervoso Central/farmacologia , Complexo Dinactina , Etanol/farmacologia , Fígado/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/patologia , Transporte Proteico/efeitos dos fármacos , Ratos
11.
Liver Int ; 34(3): 416-26, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23870027

RESUMO

BACKGROUND & AIMS: Hepatic fibrosis is characterized by excess collagen deposition, decreased extracellular matrix degradation and activation of the hepatic stellate cells. The hormone relaxin has shown promise in the treatment of fibrosis in a number of tissues, but the effect of relaxin on established hepatic fibrosis is unknown. The aim of this study was to determine the effect of relaxin on an in vivo model after establishing hepatic fibrosis METHODS: Male mice were made fibrotic by carbon tetrachloride treatment for 4 weeks, followed by treatment with two doses of relaxin (25 or 75 µg/kg/day) or vehicle for 4 weeks, with continued administration of carbon tetrachloride. RESULTS: Relaxin significantly decreased total hepatic collagen and smooth muscle actin content at both doses, and suppressed collagen I expression at the higher dose. Relaxin increased the expression of the matrix metalloproteinases MMP13 and MMP3, decreased the expression of MMP2 and tissue inhibitor of metalloproteinase 2 (TIMP2) and increased the overall level of collagen-degrading activity. Relaxin decreased TGFß-induced Smad2 nuclear localization in mouse hepatic stellate cells. CONCLUSIONS: The results suggest that relaxin reduced collagen deposition and HSC activation in established hepatic fibrosis despite the presence of continued hepatic insult. This reduced fibrosis was associated with increased expression of the fibrillar collagen-degrading enzyme MMP13, decreased expression of TIMP2, and enhanced collagen-degrading activity, and impaired TGFß signalling, consistent with relaxin's effects on activated fibroblastic cells. The results suggest that relaxin may be an effective treatment for the treatment of established hepatic fibrosis.


Assuntos
Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Fígado/patologia , Metaloproteinases da Matriz Secretadas/metabolismo , Relaxina/uso terapêutico , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Actinas/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Células Cultivadas , Colágeno/metabolismo , Hepatócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta/metabolismo
12.
Alcohol Clin Exp Res ; 38(2): 327-35, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24117505

RESUMO

BACKGROUND: Alcoholic liver disease is manifested by the presence of fatty liver, primarily due to accumulation of hepatocellular lipid droplets (LDs). The presence of membrane-trafficking proteins (e.g., Rab GTPases) with LDs indicates that LDs may be involved in trafficking pathways known to be altered in ethanol (EtOH) damaged hepatocytes. As these Rab GTPases are crucial regulators of protein trafficking, we examined the effect EtOH administration has on hepatic Rab protein content and association with LDs. METHODS: Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Whole liver and isolated LD fractions were analyzed. Identification of LDs and associated Rab proteins was performed in frozen liver or paraffin-embedded sections followed by immunohistochemical analysis. RESULTS: Lipid accumulation was characterized by larger LD vacuoles and increased total triglyceride content in EtOH-fed rats. Rabs 1, 2, 3d, 5, 7, and 18 were analyzed in postnuclear supernatant (PNS) as well as LDs. All of the Rabs were found in the PNS, and Rabs 1, 2, 5, and 7 did not show alcohol-altered content, while Rab 3d content was reduced by over 80%, and Rab 18 also showed EtOH-induced reduction in content. Rab 3d was not found to associate with LDs, while all other Rabs were found in the LD fractions, and several showed an EtOH-related decrease (Rabs 2, 5, 7, 18). Immunohistochemical analysis revealed the enhanced content of a LD-associated protein, perilipin 2 (PLIN2) that was paralleled with an associated decrease of Rab 18 in EtOH-fed rat sections. CONCLUSIONS: Chronic EtOH feeding was associated with increased PLIN2 and altered Rab GTPase content in enriched LD fractions. Although mechanisms driving these changes are not established, further studies on intracellular protein trafficking and LD biology after alcohol administration will likely contribute to our understanding of fatty liver disease.


Assuntos
Depressores do Sistema Nervoso Central/química , Etanol/química , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos/química , Solventes/química , Proteínas rab de Ligação ao GTP/química , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Western Blotting , Dieta , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Imuno-Histoquímica , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Tamanho da Partícula , Perilipina-2 , Ratos , Ratos Wistar , Triglicerídeos/metabolismo
13.
Alcohol Clin Exp Res ; 38(3): 641-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24256608

RESUMO

BACKGROUND: We have previously shown that decreased S-adenosylmethionine (SAM):S-adenosylhomocysteine (SAH) ratio generated in livers of alcohol-fed rats can impair the activities of many SAM-dependent methyltransferases. One such methyltransferase is guanidinoacetate methyltransferase (GAMT) that catalyzes the last step of creatine synthesis. As GAMT is the major utilizer of SAM, the purpose of the study was to examine the effects of ethanol (EtOH) on liver creatine levels and GAMT activity. METHODS: Male Wistar rats were pair-fed the Lieber-DeCarli control and EtOH diet for 4 to 5 weeks. At the end of the feeding regimen, the liver, kidney, and blood were removed from these rats for subsequent biochemical analyses. RESULTS: We observed ~60% decrease in creatine levels in the livers from EtOH-fed rats as compared to controls. The reduction in creatine levels correlated with lower SAM:SAH ratio observed in the livers of the EtOH-fed rats. Further, in vitro experiments with cell-free system and hepatic cells revealed it is indeed elevated SAH and lower SAM:SAH ratio that directly impairs GAMT activity and significantly reduces creatine synthesis. EtOH intake also slightly decreases the hepatocellular uptake of the creatine precursor, guanidinoacetate (GAA), and the GAMT enzyme expression that could additionally contribute to reduced liver creatine synthesis. The consequences of impaired hepatic creatine synthesis by chronic EtOH consumption include (i) increased toxicity due to GAA accumulation in the liver; (ii) reduced protection due to lower creatine levels in the liver, and (iii) reduced circulating and cardiac creatine levels. CONCLUSIONS: Chronic EtOH consumption affects the hepatic creatine biosynthetic pathway leading to detrimental consequences not only in the liver but could also affect distal organs such as the heart that depend on a steady supply of creatine from the liver.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Depressores do Sistema Nervoso Central/farmacologia , Creatina/biossíntese , Etanol/farmacologia , Guanidinoacetato N-Metiltransferase/metabolismo , Fígado/efeitos dos fármacos , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Creatina/sangue , Glicina/análogos & derivados , Glicina/metabolismo , Guanidinoacetato N-Metiltransferase/genética , Hepatócitos/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/metabolismo , Masculino , Miocárdio/metabolismo , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , Tubercidina/farmacologia
14.
Exp Mol Pathol ; 97(1): 49-56, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24842317

RESUMO

We previously reported that chronic ethanol intake lowers hepatocellular S-adenosylmethionine to S-adenosylhomocysteine ratio and significantly impairs many liver methylation reactions. One such reaction, catalyzed by guanidinoacetate methyltransferase (GAMT), is a major consumer of methyl groups and utilizes as much as 40% of the SAM-derived groups to convert guanidinoacetate (GAA) to creatine. The exposure to methyl-group consuming compounds has substantially increased over the past decade that puts additional stresses on the cellular methylation potential. The purpose of our study was to investigate whether increased ingestion of a methyl-group consumer (GAA) either alone or combined with ethanol intake, plays a role in the pathogenesis of liver injury. Adult male Wistar rats were pair-fed the Lieber DeCarli control or ethanol diet in the presence or absence of GAA for 2weeks. At the end of the feeding regimen, biochemical and histological analyses were conducted. We observed that 2 weeks of GAA- or ethanol-alone treatment increases hepatic triglyceride accumulation by 4.5 and 7-fold, respectively as compared with the pair-fed controls. However, supplementing GAA in the ethanol diet produced panlobular macro- and micro-vesicular steatosis, a marked decrease in the methylation potential and a 28-fold increased triglyceride accumulation. These GAA-supplemented ethanol diet-fed rats displayed inflammatory changes and significantly increased liver toxicity compared to the other groups. In conclusion, increased methylation demand superimposed on chronic ethanol consumption causes more pronounced liver injury. Thus, alcoholic patients should be cautioned for increased dietary intake of methyl-group consuming compounds even for a short period of time.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Etanol/toxicidade , Glicina/análogos & derivados , Fígado/efeitos dos fármacos , Metilação/efeitos dos fármacos , Consumo de Bebidas Alcoólicas/metabolismo , Amidinotransferases/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dieta , Fígado Gorduroso Alcoólico/metabolismo , Glicina/farmacologia , Guanidinoacetato N-Metiltransferase/metabolismo , Homocisteína/sangue , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Ratos Wistar , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo
15.
Hepatology ; 55(4): 1260-70, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22095875

RESUMO

UNLABELLED: The liver is the major site of ethanol metabolism and thus sustains the most injury from chronic alcohol consumption. Ethanol metabolism by the hepatocyte leads to the generation of reactive metabolites and oxygen radicals that can readily adduct DNA, lipids, and proteins. More recently, it has become apparent that ethanol consumption also leads to increased post-translational modifications of the natural repertoire, including lysine hyperacetylation. Previously, we determined that alcohol consumption selectively impairs clathrin-mediated internalization in polarized hepatocytes. However, neither the step at which the block occurs nor the mechanism responsible for the defect have been identified. To identify the specific step at which clathrin-mediated internalization is impaired, we examined the distributions, levels, and assembly of selected components of the clathrin machinery in control and ethanol-treated cells. To determine whether the impairment is caused by ethanol-induced lysine acetylation, we also examined the same coat components in cells treated with trichostatin A (TSA), a deacetylase inhibitor that leads to protein hyperacetylation in the absence of ethanol. CONCLUSION: We determined that both ethanol and TSA impair internalization at a late stage before vesicle fission. We further determined that this defect is likely the result of decreased dynamin recruitment to the necks of clathrin-coated invaginations resulting in impaired vesicle budding. These results also raise the exciting possibility that agents that promote lysine deacetylation may be effective therapeutics for the treatment of alcoholic liver disease.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Dinaminas/metabolismo , Etanol/farmacologia , Lisina/metabolismo , Acetilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Vesículas Revestidas por Clatrina/efeitos dos fármacos , Dinaminas/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Exocitose/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Modelos Animais , Ratos
16.
Am J Physiol Gastrointest Liver Physiol ; 303(12): G1402-15, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23064763

RESUMO

Although alcoholic liver disease is clinically well described, the molecular basis for alcohol-induced hepatotoxicity is not well understood. Previously, we found that alcohol exposure led to increased microtubule acetylation and stability in polarized, hepatic WIF-B cells and in livers from ethanol-fed rats. Because microtubules are known to regulate transcription factor nuclear translocation and dynamic microtubules are required for translocation of at least a subset of these factors, we examined whether alcohol-induced microtubule acetylation and stability impair nuclear translocation. We examined nuclear delivery of factors representing the two mechanisms by which microtubules regulate translocation. To represent factors that undergo directed delivery, we examined growth hormone-induced STAT5B translocation and IL-6-induced STAT3 translocation. To represent factors that are sequestered in the cytoplasm by microtubule attachment until ligand activation, we examined transforming growth factor-ß-induced Smad2/3 translocation. We found that ethanol exposure selectively impaired translocation of the STATs, but not Smad2/3. STAT5B delivery was decreased to a similar extent by addition of taxol (a microtubule-stabilizing drug) or trichostatin A (a deacetylase inhibitor), agents that promote microtubule acetylation in the absence of alcohol. Thus the alcohol-induced impairment of STAT nuclear translocation can be explained by increased microtubule acetylation and stability. Only ethanol treatment impaired STAT5B activation, indicating that microtubules are not important for its activation by Jak2. Furthermore, nuclear exit was not changed in treated cells, indicating that this process is also independent of microtubule acetylation and stability. Together, these results raise the exciting possibility that deacetylase agonists may be effective therapeutics for the treatment of alcoholic liver disease.


Assuntos
Núcleo Celular/metabolismo , Hepatite Alcoólica/metabolismo , Microtúbulos/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT5/metabolismo , Proteína Smad2/metabolismo , Proteína Smad4/metabolismo , Acetilação , Animais , Masculino , Transporte Proteico , Ratos , Ratos Wistar
17.
Alcohol Clin Exp Res ; 35(6): 1106-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21428986

RESUMO

BACKGROUND: Most alcohol abusers smoke cigarettes and approximately half of all cigarette smokers consume alcohol. However, no animal models of cigarette and alcohol co-exposure exist to examine reactive aldehydes in the lungs. Cigarette smoking results in elevated lung acetaldehyde (AA) and malondialdehyde (MDA) levels. Likewise, alcohol metabolism produces AA via the action of alcohol dehydrogenase and MDA via lipid peroxidation. A high concentration of AA and MDA form stable hybrid protein adducts known as malondialdehyde-acetaldehyde (MAA) adducts. We hypothesized that chronic cigarette smoke and alcohol exposure in an in vivo mouse model would result in the in vivo formation of MAA adducts. METHODS: We fed C57BL/6 mice ad libitum ethanol (20%) in drinking water and exposed them to whole-body cigarette smoke 2 h/d, 5 d/wk for 6 weeks. Bronchoalveolar lavage fluid and lung homogenates were assayed for AA, MDA, and MAA adduct concentrations. MAA-adducted proteins were identified by Western blot and ELISA. RESULTS: Smoke and alcohol exposure alone elevated both AA and MDA, but only the combination of smoke+alcohol generated protein-adducting concentrations of AA and MDA. MAA-adducted protein (~500 ng/ml) was significantly elevated in the smoke+alcohol-exposed mice. Of the 5 MAA-adducted proteins identified by Western blot, 1 protein band immunoprecipitated with antibodies to surfactant protein D. Similar to in vitro PKC stimulation by purified MAA-adducted protein, protein kinase C (PKC) epsilon was activated only in tracheal epithelial extracts from smoke- and alcohol-exposed mice. CONCLUSIONS: These data demonstrate that only the combination of cigarette smoke exposure and alcohol feeding in mice results in the generation of significant AA and MDA concentrations, the formation of MAA-adducted protein, and the activation of airway epithelial PKC epsilon in the lung.


Assuntos
Acetaldeído/metabolismo , Consumo de Bebidas Alcoólicas/metabolismo , Adutos de DNA/metabolismo , Pulmão/metabolismo , Malondialdeído/metabolismo , Fumar/metabolismo , Consumo de Bebidas Alcoólicas/genética , Animais , Líquido da Lavagem Broncoalveolar/química , Adutos de DNA/genética , Etanol/administração & dosagem , Etanol/toxicidade , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fumar/efeitos adversos , Fumar/genética
18.
Am J Physiol Gastrointest Liver Physiol ; 299(3): G661-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20595623

RESUMO

Ethanol metabolism in the liver induces oxidative stress and altered cytokine production preceding myofibroblast activation and fibrogenic responses. The purpose of this study was to determine how ethanol affects the fibrogenic response in precision-cut liver slices (PCLS). PCLS were obtained from chow-fed male Wistar rats (200-300 g) and were cultured up to 96 h in medium, 25 mM ethanol, or 25 mM ethanol and 0.5 mM 4-methylpyrazole (4-MP), an inhibitor of ethanol metabolism. Slices from every time point (24, 48, 72, and 96 h) were examined for glutathione (GSH) levels, lipid peroxidation [thiobarbituric acid-reactive substance (TBARS) assay], cytokine production (ELISA and RT-PCR), and myofibroblast activation [immunoblotting and immunohistochemistry for smooth muscle actin (SMA) and collagen]. Treatment of PCLS with 25 mM ethanol induced significant oxidative stress within 24 h, including depletion of cellular GSH and increased lipid peroxidation compared with controls (P < 0.05). Ethanol treatment also elicited a significant and sustained increase in interleukin-6 (IL-6) production (P < 0.05). Importantly, ethanol treatment accelerates a fibrogenic response after 48 h, represented by significant increases in SMA and collagen 1alpha(I) production (P < 0.05). These ethanol-induced effects were prevented by the addition of 4-MP. Ethanol metabolism induces oxidative stress (GSH depletion and increased lipid peroxidation) and sustained IL-6 expression in rat PCLS. These phenomena precede and coincide with myofibroblast activation, which occurs within 48 h of treatment. These results indicate the PCLS can be used as in vitro model for studying multicellular interactions during the early stages of ethanol-induced liver injury and fibrogenesis.


Assuntos
Etanol/toxicidade , Fibroblastos/efeitos dos fármacos , Cirrose Hepática/induzido quimicamente , Fígado/efeitos dos fármacos , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Interleucina-6/genética , Interleucina-6/metabolismo , Peroxidação de Lipídeos , Fígado/citologia , Cirrose Hepática/patologia , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
19.
Biochem Biophys Res Commun ; 391(2): 1291-6, 2010 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-20026058

RESUMO

The proteasome is a multi-catalytic protein degradation enzyme that is regulated by ethanol-induced oxidative stress; such suppression is attributed to CYP2E1-generated metabolites. However, under certain conditions, it appears that in addition to oxidative stress, other mechanisms are also involved in proteasome regulation. This study investigated whether impaired protein methylation that occurs during exposure of liver cells to ethanol, may contribute to suppression of proteasome activity. We measured the chymotrypsin-like proteasome activity in Huh7CYP cells, hepatocytes, liver cytosols and nuclear extracts or purified 20S proteasome under conditions that maintain or prevent protein methylation. Reduction of proteasome activity of hepatoma cell and hepatocytes by ethanol or tubercidin was prevented by simultaneous treatment with S-adenosylmethionine (SAM). Moreover, the tubercidin-induced decline in proteasome activity occurred in both nuclear and cytosolic fractions. In vitro exposure of cell cytosolic fractions or highly purified 20S proteasome to low SAM:S-adenosylhomocysteine (SAH) ratios in the buffer also suppressed proteasome function, indicating that one or more methyltransferase(s) may be associated with proteasomal subunits. Immunoblotting a purified 20S rabbit red cell proteasome preparation using methyl lysine-specific antibodies revealed a 25kDa proteasome subunit that showed positive reactivity with anti-methyl lysine. This reactivity was modified when 20S proteasome was exposed to differential SAM:SAH ratios. We conclude that impaired methylation of proteasome subunits suppressed proteasome activity in liver cells indicating an additional, yet novel mechanism of proteasome activity regulation by ethanol.


Assuntos
Fígado/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Quimotripsina/metabolismo , Etanol/farmacologia , Humanos , Fígado/efeitos dos fármacos , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Coelhos , S-Adenosil-Homocisteína/metabolismo , S-Adenosil-Homocisteína/farmacologia , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Tubercidina/farmacologia
20.
Alcohol Clin Exp Res ; 34(2): 280-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19951295

RESUMO

BACKGROUND: Although the clinical manifestations of alcoholic liver disease are well described, little is known about the molecular basis for liver injury. Recent studies have indicated that chronic alcohol consumption leads to the lysine-hyperacetylation of several hepatic proteins, and this list is growing quickly. METHODS: To identify other hyperacetylated proteins in ethanol-fed livers, we chose a proteomics approach. Cytosolic and membrane proteins (excluding nuclei) were separated on 2D gels, transferred to PVDF and immunoblotted with antibodies specific for acetylated lysine residues. Hyperacetylated proteins were selected for trypsin digestion and mass spectrometric analysis. RESULTS: In all, 40 proteins were identified, 11 of which are known acetylated proteins. Remarkably, the vast majority of hyperacetylated membrane proteins were mitochondrial residents. Hyperacetylated cytosolic proteins ranged in function from metabolism to cytoskeletal support. Notably, 3 key anti-oxidant proteins were identified whose activities are impaired in ethanol-treated cells. We confirmed that the anti-oxidant enzyme, glutathione peroxidase 1, actin and cortactin are hyperacetylated in ethanol-treated livers. CONCLUSIONS: Alcohol-induced hyperacetylation of multiple proteins may contribute to the development of liver injury. The abundance of acetylated mitochondrial proteins further suggests that this modification is important in regulating liver metabolism and when perturbed, may contribute to the progression of a variety of metabolic diseases.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Etanol/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Proteínas/metabolismo , Acetilação , Actinas/metabolismo , Animais , Western Blotting , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Glutationa Peroxidase/metabolismo , Imunoprecipitação , Masculino , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA