Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 109(8): 1472-1483, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35931051

RESUMO

Dyskeratosis congenita (DC) is an inherited bone-marrow-failure disorder characterized by a triad of mucocutaneous features that include abnormal skin pigmentation, nail dystrophy, and oral leucoplakia. Despite the identification of several genetic variants that cause DC, a significant proportion of probands remain without a molecular diagnosis. In a cohort of eight independent DC-affected families, we have identified a remarkable series of heterozygous germline variants in the gene encoding thymidylate synthase (TYMS). Although the inheritance appeared to be autosomal recessive, one parent in each family had a wild-type TYMS coding sequence. Targeted genomic sequencing identified a specific haplotype and rare variants in the naturally occurring TYMS antisense regulator ENOSF1 (enolase super family 1) inherited from the other parent. Lymphoblastoid cells from affected probands have severe TYMS deficiency, altered cellular deoxyribonucleotide triphosphate pools, and hypersensitivity to the TYMS-specific inhibitor 5-fluorouracil. These defects in the nucleotide metabolism pathway resulted in genotoxic stress, defective transcription, and abnormal telomere maintenance. Gene-rescue studies in cells from affected probands revealed that post-transcriptional epistatic silencing of TYMS is occurring via elevated ENOSF1. These cell and molecular abnormalities generated by the combination of germline digenic variants at the TYMS-ENOSF1 locus represent a unique pathogenetic pathway for DC causation in these affected individuals, whereas the parents who are carriers of either of these variants in a singular fashion remain unaffected.


Assuntos
Disceratose Congênita , Timidilato Sintase , Disceratose Congênita/genética , Células Germinativas , Heterozigoto , Humanos , Nucleotídeos , Timidilato Sintase/deficiência , Timidilato Sintase/genética
2.
Blood ; 140(6): 556-570, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35605178

RESUMO

Inherited bone marrow (BM) failure syndromes are a diverse group of disorders characterized by BM failure, usually in association with ≥1 extrahematopoietic abnormalities. BM failure, which can involve ≥1 cell lineages, often presents in the pediatric age group. Furthermore, some children initially labeled as having idiopathic aplastic anemia or myelodysplasia represent cryptic cases of inherited BM failure. Significant advances in the genetics of these syndromes have been made, identifying more than 100 disease genes, giving insights into normal hematopoiesis and how it is disrupted in patients with BM failure. They have also provided important information on fundamental biological pathways, including DNA repair: Fanconi anemia (FA) genes; telomere maintenance: dyskeratosis congenita (DC) genes; and ribosome biogenesis: Shwachman-Diamond syndrome and Diamond-Blackfan anemia genes. In addition, because these disorders are usually associated with extrahematopoietic abnormalities and increased risk of cancer, they have provided insights into human development and cancer. In the clinic, genetic tests stemming from the recent advances facilitate diagnosis, especially when clinical features are insufficient to accurately classify a disorder. Hematopoietic stem cell transplantation using fludarabine-based protocols has significantly improved outcomes, particularly in patients with FA or DC. Management of some other complications, such as cancer, remains a challenge. Recent studies have suggested the possibility of new and potentially more efficacious therapies, including a renewed focus on hematopoietic gene therapy and drugs [transforming growth factor-ß inhibitors for FA and PAPD5, a human poly(A) polymerase, inhibitors for DC] that target disease-specific defects.


Assuntos
Anemia Aplástica , Doenças da Medula Óssea , Disceratose Congênita , Neoplasias , Pancitopenia , Anemia Aplástica/complicações , Anemia Aplástica/genética , Anemia Aplástica/terapia , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/terapia , Transtornos da Insuficiência da Medula Óssea , Criança , Disceratose Congênita/genética , Disceratose Congênita/terapia , Humanos , Neoplasias/complicações , Pancitopenia/complicações
3.
Proc Natl Acad Sci U S A ; 117(29): 17151-17155, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32636268

RESUMO

Inherited bone marrow failure (BMF) syndromes are a heterogeneous group of diseases characterized by defective hematopoiesis and often predisposing to myelodysplastic syndrome (MDS) and acute myelogenous leukemia. We have studied a large family consisting of several affected individuals with hematologic abnormalities, including one family member who died of acute leukemia. By whole-exome sequencing, we identified a novel frameshift variant in the ubiquitously expressed transcription factor specificity protein 1 (SP1). This heterozygous variant (c.1995delA) truncates the canonical Sp1 molecule in the highly conserved C-terminal DNA-binding zinc finger domains. Transcriptomic analysis and gene promoter characterization in patients' blood revealed a hypermorphic effect of this Sp1 variant, triggering superactivation of Sp1-mediated transcription and driving significant up-regulation of Sp1 target genes. This familial genetic study indicates a central role for Sp1 in causing autosomal dominant transmission of BMF, thereby confirming its critical role in hematopoiesis in humans.


Assuntos
Transtornos da Insuficiência da Medula Óssea/genética , Mutação da Fase de Leitura/genética , Fator de Transcrição Sp1/genética , Transcrição Gênica/genética , Feminino , Humanos , Masculino , Linhagem , Transcriptoma/genética , Regulação para Cima/genética , Dedos de Zinco/genética
5.
Br J Haematol ; 199(5): 754-764, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36156210

RESUMO

Despite the inclusion of inherited myeloid malignancies as a separate entity in the World Health Organization Classification, many established predisposing loci continue to lack functional characterization. While germline mutations in the DNA repair factor ERCC excision repair 6 like 2 (ERCC6L2) give rise to bone marrow failure and acute myeloid leukaemia, their consequences on normal haematopoiesis remain unclear. To functionally characterise the dual impact of germline ERCC6L2 loss on human primary haematopoietic stem/progenitor cells (HSPCs) and mesenchymal stromal cells (MSCs), we challenged ERCC6L2-silenced and patient-derived cells ex vivo. Here, we show for the first time that ERCC6L2-deficiency in HSPCs significantly impedes their clonogenic potential and leads to delayed erythroid differentiation. This observation was confirmed by CIBERSORTx RNA-sequencing deconvolution performed on ERCC6L2-silenced erythroid-committed cells, which demonstrated higher proportions of polychromatic erythroblasts and reduced orthochromatic erythroblasts versus controls. In parallel, we demonstrate that the consequences of ERCC6L2-deficiency are not limited to HSPCs, as we observe a striking phenotype in patient-derived and ERCC6L2-silenced MSCs, which exhibit enhanced osteogenesis and suppressed adipogenesis. Altogether, our study introduces a valuable surrogate model to study the impact of inherited myeloid mutations and highlights the importance of accounting for the influence of germline mutations in HSPCs and their microenvironment.


Assuntos
Medula Óssea , Eritropoese , Humanos , Eritropoese/genética , Mutação em Linhagem Germinativa , Reparo do DNA/genética , Células Germinativas , DNA Helicases/genética
6.
Proc Natl Acad Sci U S A ; 115(30): 7777-7782, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987015

RESUMO

Biallelic variants in the ERCC excision repair 6 like 2 gene (ERCC6L2) are known to cause bone marrow failure (BMF) due to defects in DNA repair and mitochondrial function. Here, we report on eight cases of BMF from five families harboring biallelic variants in ERCC6L2, two of whom present with myelodysplasia. We confirm that ERCC6L2 patients' lymphoblastoid cell lines (LCLs) are hypersensitive to DNA-damaging agents that specifically activate the transcription coupled nucleotide excision repair (TCNER) pathway. Interestingly, patients' LCLs are also hypersensitive to transcription inhibitors that interfere with RNA polymerase II (RNA Pol II) and display an abnormal delay in transcription recovery. Using affinity-based mass spectrometry we found that ERCC6L2 interacts with DNA-dependent protein kinase (DNA-PK), a regulatory component of the RNA Pol II transcription complex. Chromatin immunoprecipitation PCR studies revealed ERCC6L2 occupancy on gene bodies along with RNA Pol II and DNA-PK. Patients' LCLs fail to terminate transcript elongation accurately upon DNA damage and display a significant increase in nuclear DNA-RNA hybrids (R loops). Collectively, we conclude that ERCC6L2 is involved in regulating RNA Pol II-mediated transcription via its interaction with DNA-PK to resolve R loops and minimize transcription-associated genome instability. The inherited BMF syndrome caused by biallelic variants in ERCC6L2 can be considered as a primary transcription deficiency rather than a DNA repair defect.


Assuntos
Alelos , Doenças da Medula Óssea/metabolismo , DNA Helicases/metabolismo , Reparo do DNA , Doenças Genéticas Inatas/metabolismo , Instabilidade Genômica , Transcrição Gênica , Células A549 , Doenças da Medula Óssea/genética , Doenças da Medula Óssea/patologia , DNA Helicases/genética , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Feminino , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/patologia , Células HeLa , Humanos , Masculino , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Síndrome
7.
Am J Hum Genet ; 99(1): 115-24, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27346687

RESUMO

A substantial number of individuals with bone marrow failure (BMF) present with one or more extra-hematopoietic abnormality. This suggests a constitutional or inherited basis, and yet many of them do not fit the diagnostic criteria of the known BMF syndromes. Through exome sequencing, we have now identified a subgroup of these individuals, defined by germline biallelic mutations in DNAJC21 (DNAJ homolog subfamily C member 21). They present with global BMF, and one individual developed a hematological cancer (acute myeloid leukemia) in childhood. We show that the encoded protein associates with rRNA and plays a highly conserved role in the maturation of the 60S ribosomal subunit. Lymphoblastoid cells obtained from an affected individual exhibit increased sensitivity to the transcriptional inhibitor actinomycin D and reduced amounts of rRNA. Characterization of mutations revealed impairment in interactions with cofactors (PA2G4, HSPA8, and ZNF622) involved in 60S maturation. DNAJC21 deficiency resulted in cytoplasmic accumulation of the 60S nuclear export factor PA2G4, aberrant ribosome profiles, and increased cell death. Collectively, these findings demonstrate that mutations in DNAJC21 cause a cancer-prone BMF syndrome due to corruption of early nuclear rRNA biogenesis and late cytoplasmic maturation of the 60S subunit.


Assuntos
Anemia Aplástica/complicações , Anemia Aplástica/genética , Doenças da Medula Óssea/complicações , Doenças da Medula Óssea/genética , Proteínas de Choque Térmico HSP40/genética , Hemoglobinúria Paroxística/complicações , Hemoglobinúria Paroxística/genética , Mutação/genética , Neoplasias/complicações , Neoplasias/genética , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/patologia , Sequência de Aminoácidos , Transtornos da Insuficiência da Medula Óssea , Proliferação de Células , Forma Celular , Criança , Pré-Escolar , Feminino , Proteínas de Choque Térmico HSP40/química , Humanos , Leucemia Mieloide Aguda/complicações , Leucemia Mieloide Aguda/genética , Masculino , Ligação Proteica , RNA Ribossômico/biossíntese
8.
Am J Hum Genet ; 94(2): 246-56, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24507776

RESUMO

Exome sequencing was performed in three index cases with bone marrow failure and neurological dysfunction and whose parents are first-degree cousins. Homozygous truncating mutations were identified in ERCC6L2 in two of the individuals. Both of these mutations affect the subcellular localization and stability of ERCC6L2. We show here that knockdown of ERCC6L2 in human A549 cells significantly reduced their viability upon exposure to the DNA-damaging agents mitomycin C and Irofulven, but not etoposide and camptothecin, suggesting a role in nucleotide excision repair. ERCC6L2-knockdown cells also displayed H2AX phosphorylation, which significantly increased upon genotoxic stress, suggesting an early DNA-damage response. Intriguingly, ERCC6L2 was seen to translocate to the mitochondria and the nucleus in response to DNA damage, and ERCC6L2 knockdown induced intracellular reactive oxygen species (ROS). Treatment with the ROS scavenger N-acetyl cysteine attenuated the Irofulven-induced cytotoxicity in ERCC6L2-knockdown cells and abolished ERCCGL2 traffic to the mitochondria and nucleus in response to this DNA-damaging agent. Collectively, these observations identify a distinct bone-marrow-failure syndrome due to mutations in ERCC6L2, a gene implicated in DNA repair and mitochondrial function.


Assuntos
DNA Helicases/genética , Reparo do DNA/genética , Hemoglobinúria Paroxística/genética , Mitocôndrias/genética , Acetilcisteína/metabolismo , Anemia Aplástica , Doenças da Medula Óssea , Transtornos da Insuficiência da Medula Óssea , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitomicina/toxicidade , Mutação , Linhagem , Fosforilação , Espécies Reativas de Oxigênio , Sesquiterpenos/toxicidade
9.
Blood ; 126(2): 176-84, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-26024875

RESUMO

Dyskeratosis congenita (DC) and related diseases are a heterogeneous group of disorders characterized by impaired telomere maintenance, known collectively as the telomeropathies. Disease-causing variants have been identified in 10 telomere-related genes including the reverse transcriptase (TERT) and the RNA component (TERC) of the telomerase complex. Variants in TERC and TERT can impede telomere elongation causing stem cells to enter premature replicative senescence and/or apoptosis as telomeres become critically short. This explains the major impact of the disease on highly proliferative tissues such as the bone marrow and skin. However, telomerase variants are not always fully penetrant and in some families disease-causing variants are seen in asymptomatic family members. As a result, determining the pathogenic status of newly identified variants in TERC or TERT can be quite challenging. Over a 3-year period, we have identified 26 telomerase variants (16 of which are novel) in 23 families. Additional investigations (including family segregation and functional studies) enabled these to be categorized into 3 groups: (1) disease-causing (n = 15), (2) uncertain status (n = 6), and (3) bystanders (n = 5). Remarkably, this process has also enabled us to identify families with novel mechanisms of inheriting human telomeropathies. These include triallelic mutations, involving 2 different telomerase genes, and an epigenetic-like inheritance of short telomeres in the absence of a telomerase mutation. This study therefore highlights that telomerase variants have highly variable functional and clinical manifestations and require thorough investigation to assess their pathogenic contribution.


Assuntos
Disceratose Congênita/genética , Epigênese Genética , Telomerase/genética , Alelos , Sequência de Bases , Células Cultivadas , Estudos de Coortes , Família , Humanos , Padrões de Herança , Dados de Sequência Molecular , Mutação , Linhagem , RNA/genética
10.
Haematologica ; 101(10): 1180-1189, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27612988

RESUMO

Dyskeratosis congenita is a highly pleotropic genetic disorder. This heterogeneity can lead to difficulties in making an accurate diagnosis and delays in appropriate management. The aim of this study was to determine the underlying genetic basis in patients presenting with features of dyskeratosis congenita and who were negative for mutations in the classical dyskeratosis congenita genes. By whole exome and targeted sequencing, we identified biallelic variants in genes that are not associated with dyskeratosis congenita in 17 individuals from 12 families. Specifically, these were homozygous variants in USB1 (8 families), homozygous missense variants in GRHL2 (2 families) and identical compound heterozygous variants in LIG4 (2 families). All patients had multiple somatic features of dyskeratosis congenita but not the characteristic short telomeres. Our case series shows that biallelic variants in USB1, LIG4 and GRHL2, the genes mutated in poikiloderma with neutropenia, LIG4/Dubowitz syndrome and the recently recognized ectodermal dysplasia/short stature syndrome, respectively, cause features that overlap with dyskeratosis congenita. Strikingly, these genes also overlap in their biological function with the known dyskeratosis congenita genes that are implicated in telomere maintenance and DNA repair pathways. Collectively, these observations demonstrate the marked overlap of dyskeratosis congenita with four other genetic syndromes, confounding accurate diagnosis and subsequent management. This has important implications for establishing a genetic diagnosis when a new patient presents in the clinic. Patients with clinical features of dyskeratosis congenita need to have genetic analysis of USB1, LIG4 and GRHL2 in addition to the classical dyskeratosis congenita genes and telomere length measurements.


Assuntos
Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Exoma/genética , Variação Genética/genética , DNA Ligase Dependente de ATP/genética , Proteínas de Ligação a DNA/genética , Humanos , Linhagem , Diester Fosfórico Hidrolases/genética , Análise de Sequência de DNA , Síndrome , Fatores de Transcrição/genética
12.
Nat Commun ; 15(1): 361, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191578

RESUMO

R-loops that accumulate at transcription sites pose a persistent threat to genome integrity. PSIP1 is a chromatin protein associated with transcriptional elongation complex, possesses histone chaperone activity, and is implicated in recruiting RNA processing and DNA repair factors to transcription sites. Here, we show that PSIP1 interacts with R-loops and other proteins involved in R-loop homeostasis, including PARP1. Genome-wide mapping of PSIP1, R-loops and γ-H2AX in PSIP1-depleted human and mouse cell lines revealed an accumulation of R-loops and DNA damage at gene promoters in the absence of PSIP1. R-loop accumulation causes local transcriptional arrest and transcription-replication conflict, leading to DNA damage. PSIP1 depletion increases 53BP1 foci and reduces RAD51 foci, suggesting altered DNA repair choice. Furthermore, PSIP1 depletion increases the sensitivity of cancer cells to PARP1 inhibitors and DNA-damaging agents that induce R-loop-induced DNA damage. These findings provide insights into the mechanism through which PSIP1 maintains genome integrity at the site of transcription.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Estruturas R-Loop , Humanos , Animais , Camundongos , Estruturas R-Loop/genética , Linhagem Celular , Dano ao DNA , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal
13.
Nat Commun ; 15(1): 5006, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866738

RESUMO

Body mass results from a complex interplay between genetics and environment. Previous studies of the genetic contribution to body mass have excluded repetitive regions due to the technical limitations of platforms used for population scale studies. Here we apply genome-wide approaches, identifying an association between adult body mass and the copy number (CN) of 47S-ribosomal DNA (rDNA). rDNA codes for the 18 S, 5.8 S and 28 S ribosomal RNA (rRNA) components of the ribosome. In mammals, there are hundreds of copies of these genes. Inter-individual variation in the rDNA CN has not previously been associated with a mammalian phenotype. Here, we show that rDNA CN variation associates with post-pubertal growth rate in rats and body mass index in adult humans. rDNA CN is not associated with rRNA transcription rates in adult tissues, suggesting the mechanistic link occurs earlier in development. This aligns with the observation that the association emerges by early adulthood.


Assuntos
Índice de Massa Corporal , Variações do Número de Cópias de DNA , DNA Ribossômico , Animais , Humanos , DNA Ribossômico/genética , Masculino , Ratos , Feminino , Adulto , Mamíferos/genética , RNA Ribossômico/genética , RNA Ribossômico/metabolismo
16.
Expert Rev Hematol ; 15(8): 685-696, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35929966

RESUMO

BACKGROUND: Dyskeratosis congenita (DC) is a multisystem syndrome characterized by mucocutaneous abnormalities, bone marrow failure, and predisposition to cancer. Studies over the last 25 years have led to the identification of 18 disease genes. These have a principal role in telomere maintenance, and patients usually have very short/abnormal telomeres. The advances have also led to the unification of DC with a number of other diseases, now collectively referred to as the telomeropathies or telomere biology disorders. WHAT IS COVERED: Clinical features, genetics, and biology of the different subtypes. Expert view on diagnosis, treatment of the hematological complications and future. EXPERT VIEW: As these are very pleotropic disorders affecting multiple organs, a high index of suspicion is necessary to make the diagnosis. Telomere length measurement and genetic analysis of the disease genes have become useful diagnostic tools. Although hematological defects can respond to danazol/oxymetholone, the only current curative treatment for these is hematopoietic stem cell transplantation (HSCT) using fludarabine-based conditioning protocols. New therapies are needed where danazol/oxymetholone is ineffective and HSCT is not feasible.


Assuntos
Disceratose Congênita , Telomerase , Biologia , Danazol , Disceratose Congênita/diagnóstico , Disceratose Congênita/genética , Disceratose Congênita/terapia , Humanos , Mutação , Oximetolona , Telômero/genética , Telômero/metabolismo
17.
Cells ; 11(24)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36552797

RESUMO

In advanced metastatic cancers with reduced patient survival and poor prognosis, expression of vimentin, a type III intermediate filament protein is frequently observed. Vimentin appears to suppress epithelial characteristics and augments cell migration but the molecular basis for these changes is not well understood. Here, we have ectopically expressed vimentin in MCF-7 and investigated its genomic and functional implications. Vimentin changed the cell shape by decreasing major axis, major axis angle and increased cell migration, without affecting proliferation. Vimentin downregulated major keratin genes KRT8, KRT18 and KRT19. Transcriptome-coupled GO and KEGG analyses revealed that vimentin-affected genes were linked to either cell-cell/cell-ECM or cell cycle/proliferation specific pathways. Using shRNA mediated knockdown of vimentin in two cell types; MCF-7FV (ectopically expressing) and MDA-MB-231 (endogenously expressing), we identified a vimentin-specific signature consisting of 13 protein encoding genes (CDH5, AXL, PTPRM, TGFBI, CDH10, NES, E2F1, FOXM1, CDC45, FSD1, BCL2, KIF26A and WISP2) and two long non-coding RNAs, LINC00052 and C15ORF9-AS1. CDH5, an endothelial cadherin, which mediates cell-cell junctions, was the most downregulated protein encoding gene. Interestingly, downregulation of CDH5 by shRNA significantly increased cell migration confirming our RNA-Seq data. Furthermore, presence of vimentin altered the lamin expression in MCF-7. Collectively, we demonstrate, for the first time, that vimentin in breast cancer cells could change nuclear architecture by affecting lamin expression, which downregulates genes maintaining cell-cell junctions resulting in increased cell migration.


Assuntos
Neoplasias da Mama , Filamentos Intermediários , Humanos , Feminino , Linhagem Celular Tumoral , Filamentos Intermediários/metabolismo , Vimentina/genética , Vimentina/metabolismo , Neoplasias da Mama/genética , Movimento Celular/genética , RNA Interferente Pequeno , Perfilação da Expressão Gênica , Laminas/genética , Proteínas do Tecido Nervoso/genética
18.
Blood Adv ; 5(23): 5360-5371, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34625797

RESUMO

Gene expression profiling has long been used in understanding the contribution of genes and related pathways in disease pathogenesis and susceptibility. We have performed whole-blood transcriptomic profiling in a subset of patients with inherited bone marrow failure (IBMF) whose diseases are clinically and genetically characterized as Fanconi anemia (FA), Shwachman-Diamond syndrome (SDS), and dyskeratosis congenita (DC). We hypothesized that annotating whole-blood transcripts genome wide will aid in understanding the complexity of gene regulation across these IBMF subtypes. Initial analysis of these blood-derived transcriptomes revealed significant skewing toward upregulated genes in patients with FA when compared with controls. Patients with SDS or DC also showed similar skewing profiles in their transcriptional status revealing a common pattern across these different IBMF subtypes. Gene set enrichment analysis revealed shared pathways involved in protein translation and elongation (ribosome constituents), RNA metabolism (nonsense-mediated decay), and mitochondrial function (electron transport chain). We further identified a discovery set of 26 upregulated genes at stringent cutoff (false discovery rate < 0.05) that appeared as a unified signature across the IBMF subtypes. Subsequent transcriptomic analysis on genetically uncharacterized patients with BMF revealed a striking overlap of genes, including 22 from the discovery set, which indicates a unified transcriptional drive across the classic (FA, SDS, and DC) and uncharacterized BMF subtypes. This study has relevance in disease pathogenesis, for example, in explaining the features (including the BMF) common to all patients with IBMF and suggests harnessing this transcriptional signature for patient benefit.


Assuntos
Doenças da Medula Óssea , Disceratose Congênita , Anemia de Fanconi , Doenças da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea , Anemia de Fanconi/genética , Perfilação da Expressão Gênica , Humanos
19.
Nat Commun ; 11(1): 1044, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098966

RESUMO

The inclusion of familial myeloid malignancies as a separate disease entity in the revised WHO classification has renewed efforts to improve the recognition and management of this group of at risk individuals. Here we report a cohort of 86 acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) families with 49 harboring germline variants in 16 previously defined loci (57%). Whole exome sequencing in a further 37 uncharacterized families (43%) allowed us to rationalize 65 new candidate loci, including genes mutated in rare hematological syndromes (ADA, GP6, IL17RA, PRF1 and SEC23B), reported in prior MDS/AML or inherited bone marrow failure series (DNAH9, NAPRT1 and SH2B3) or variants at novel loci (DHX34) that appear specific to inherited forms of myeloid malignancies. Altogether, our series of MDS/AML families offer novel insights into the etiology of myeloid malignancies and provide a framework to prioritize variants for inclusion into routine diagnostics and patient management.


Assuntos
Mutação em Linhagem Germinativa , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Dineínas do Axonema/genética , Estudos de Coortes , Humanos , Degradação do RNAm Mediada por Códon sem Sentido , Linhagem , Perforina/genética , Glicoproteínas da Membrana de Plaquetas/genética , RNA Helicases/genética , Receptores de Interleucina-17/genética , Proteínas de Transporte Vesicular/genética , Sequenciamento do Exoma
20.
Biochem Soc Trans ; 37(Pt 6): 1389-93, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19909282

RESUMO

Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system playing critical roles in basal synaptic transmission and mechanisms of learning and memory. Under normal conditions, glutamate is sequestered within synaptic vesicles (approximately 100 mM) with extracellular glutamate concentrations being limited (<1 microM), via retrieval by plasma-membrane transporters on neuronal and glial cells. In the case of central nervous system trauma, stroke, epilepsy, and in certain neurodegenerative diseases, increased concentrations of extracellular glutamate (by vesicular release, cell lysis and/or decreased glutamate transporter uptake/reversal) stimulate the overactivation of local ionotropic glutamate receptors that trigger neuronal cell death (excitotoxicity). Other natural agonists, such as domoic acid, alcohol and auto-antibodies, have also been reported to induce excitotoxicity.


Assuntos
Axônios/metabolismo , Dendritos/metabolismo , Neurônios , Animais , Axônios/ultraestrutura , Dendritos/ultraestrutura , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Mitocôndrias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA