Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(2): 740-745, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591806

RESUMO

Sodium-ion batteries (NIBs) are the most promising alternatives to lithium-ion batteries in the development of renewable energy sources. The advancement of NIBs depends on the exploration of new electrode materials and fundamental understanding of working mechanisms. Herein, via experimental and simulation methods, we develop a mixed polyanionic compound, Na2 Fe(C2 O4 )SO4 ⋅H2 O, as a cathode for NIBs. Thanks to its rigid three dimensional framework and the combined inductive effects from oxalate and sulfate, it delivered reversible Na insertion/desertion at average discharging voltages of 3.5 and 3.1 V for 500 cycles with Coulombic efficiencies of ca. 99 %. In situ synchrotron X-ray measurements and DFT calculations demonstrate the Fe2+ /Fe3+ redox reactions contribute to electron compensation during Na+ desertion/insertion. The study suggests mixed polyanionic frameworks may provide promising materials for Na ion storage with the merits of low cost and environmental friendliness.

2.
Angew Chem Int Ed Engl ; 58(46): 16668-16675, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31507028

RESUMO

A photoelectrochemical (PEC) cell can split water into hydrogen and oxygen with the assistance of solar illumination. However, its application is still limited by excessive bulk carrier recombination and sluggish surface oxygen evolution reaction (OER) kinetics. Taking SnS2 as an example, a promising layered optoelectronic semiconductor, Ar plasma treatment strategy was used to introduce a SnS/SnS2 P-N heterojunction and O-S bond near the surface of a SnS2 nanosheet array, simultaneously increasing the separation efficiency of photogenerated electron-hole pairs in the bulk and lowering the OER overpotential at the surface. The onset potential of the plasma-treated SnS2 nanosheet array shifts negatively to 0.16 V, and the photocurrent density at 1.23 V vs. RHE boosts to 2.15 mA cm-2 , which is 7 times that of pristine SnS2 . This work demonstrates a facile plasma treatment strategy to modulate the energy band structure and surface chemical states for improved PEC performance.

3.
ACS Omega ; 9(17): 19282-19294, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708233

RESUMO

This work presented the influence of metal oxides as the support for silver-supported catalysts on the catalytic oxidation of diesel particulate matter (DPM). The supports selected to be used in this work were CeO2 (reducible), ZnO (semiconductor), TiO2 (reducible and semiconductor), and Al2O3 (acidic). The properties of the synthesized catalysts were investigated using XRD, TEM, H2-TPR, and XPS techniques. The DPM oxidation activity was performed using the TGA method. Different states of silver (e.g., Ag° and Ag+) were formed with different concentrations and affected the performance of the DPM oxidation. Ag2O and lattice oxygen, which were mainly generated by Ag/ZnO and Ag/CeO2, were responsible for combusting the VOCs. The metallic silver (Ag°) formed primarily on Ag/Al2O3 and Ag/TiO2 was the main component promoting soot combustion. Contact between the catalyst and DPM had a minor effect on VOC oxidation but significantly affected the soot oxidation activity.

4.
Sci Rep ; 13(1): 7262, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142605

RESUMO

An understanding on roles of excitons and plasmons is important in excitonic solar cells and photovoltaic (PV) technologies. Here, we produce new amorphous carbon (a-C) like films on Indium Tin Oxide (ITO) generating PV cells with efficiency three order of magnitude higher than the existing biomass-derived a-C. The amorphous carbon films are prepared from the bioproduct of palmyra sap with a simple, environmentally friendly, and highly reproducible method. Using spectroscopic ellipsometry, we measure simultaneously complex dielectric function, loss function as well as reflectivity and reveal coexistence of many-body resonant excitons and correlated-plasmons occurring due to strong electronic correlations. X-ray absorption and photoemission spectroscopies show the nature of electron and hole in defining the energy of the excitons and plasmons as a function of N or B doping. Our result shows new a-C like films and the importance of the coupling of resonant excitons and correlated plasmons in determining efficiency of photovoltaic devices.

5.
Heliyon ; 8(3): e09032, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35265765

RESUMO

In this study, the effect of heating temperature on the structure of graphenic-based carbon (GC) has been successfully investigated. A series of GC materials was prepared from coconut shells by a green synthesis method. The process includes heating at four temperatures (T = 400, 600, 800 and 1000 °C) followed by an exfoliation process assisted by hydrochloric acid (HCl). These materials were characterized by wide- and small-angle x-ray scattering (WAXS and SAXS), Fourier-transform infrared spectroscopy (FTIR), x-ray photoemission spectroscopy (XPS) and transmission electron microscopy (TEM). The WAXS analysis shows Braggs peaks corresponding to the reduced graphene oxide (rGO)-like phase. Investigations by FTIR and XPS methods show the presence of carbon-oxygen functional groups such as C=C (carbon with sp 2 hybridization), C-C (carbon with sp 3 hybridization), and C=O bonds. The sp 2 bonds form a 2-dimensional (2D) network in hexagonal lattice, while carbon with sp 3 bonds tends to form a 3-dimensional (3D) tetrahedral structure. The BET analysis revealed meso- and micro-pore structures in GC. Heating process reduces the specific surface area and increases pore size of GC. Moreover, increasing the heating temperature induces a decrease in radius of gyration (R g) and an increase in the formation of 2D structures in GC. The fitting results of SAXS profiles, proved by TEM and XPS, yielded the structure of GC containing the mixture of 2D and 3D structures. Thus, it is suggested that the GC has a mesostructure.

6.
Materials (Basel) ; 14(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062754

RESUMO

Hydrogenated amorphous carbon (a-C:H) films have optical and electrical properties that vary widely depending on deposition conditions; however, the electrical conduction mechanism, which is dependent on the film structure, has not yet been fully revealed. To understand the relationship between the film structure and electrical conduction mechanism, three types of a-C:H films were prepared and their film structures and electrical properties were evaluated. The sp2/(sp2 + sp3) ratios were measured by a near-edge X-ray absorption fine structure technique. From the conductivity-temperature relationship, variable-range hopping (VRH) conduction was shown to be the dominant conduction mechanism at low temperatures, and the electrical conduction mechanism changed at a transition temperature from VRH conduction to thermally activated band conduction. On the basis of structural analyses, a model of the microstructure of a-C:H that consists of sp2 and sp3-bonded carbon clusters, hydrogen atoms and dangling bonds was built. Furthermore, it is explained how several electrical conduction parameters are affected by the carrier transportation path among the clusters.

7.
Adv Mater ; 33(37): e2100793, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34331320

RESUMO

Lithium (Li)-metal anodes are of great promise for next-generation batteries due to their high theoretical capacity and low redox potential. However, Li-dendrite growth during cycling imposes a tremendous safety concern on the practical application of Li-metal anodes. Herein, an effective approach to suppress Li-dendrite growth by coating a polypropylene (PP) separator with a thin layer of ultrastrong diamond-like carbon (DLC) is reported. Theoretical calculations indicate that the DLC coating layer undergoes in situ chemical lithiation once assembled with the lithium-metal anode, transforming the DLC/PP separator into an excellent 3D Li-ion conductor. This in situ lithiated DLC/PP separator can not only mechanically suppress Li-dendrite growth by its intrinsically high modulus (≈100 GPa), but also uniformly redistributes Li ions to render dendrite-free lithium deposition. The twofold effects of the DLC/PP separator result in stable cycling of lithium plating/stripping (over 4500 h) at a high current density of 3 mA cm-2 . Remarkably, this approach enables more than 1000 stable cycles at 5 C with a capacity retention of ≈71% in a Li || LiFePO4 coin cell and more than 200 stable cycles at 0.2 C in a Li || LiNi0.5 Co0.3 Mn0.2 O2 pouch cell with cathode mass loading of ≈9 mg cm-2 .

8.
Nat Commun ; 11(1): 1225, 2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32144250

RESUMO

Potassium-ion batteries are a compelling technology for large scale energy storage due to their low-cost and good rate performance. However, the development of potassium-ion batteries remains in its infancy, mainly hindered by the lack of suitable cathode materials. Here we show that a previously known frustrated magnet, KFeC2O4F, could serve as a stable cathode for potassium ion storage, delivering a discharge capacity of ~112 mAh g-1 at 0.2 A g-1 and 94% capacity retention after 2000 cycles. The unprecedented cycling stability is attributed to the rigid framework and the presence of three channels that allow for minimized volume fluctuation when Fe2+/Fe3+ redox reaction occurs. Further, pairing this KFeC2O4F cathode with a soft carbon anode yields a potassium-ion full cell with an energy density of ~235 Wh kg-1, impressive rate performance and negligible capacity decay within 200 cycles. This work sheds light on the development of low-cost and high-performance K-based energy storage devices.

9.
Nat Commun ; 10(1): 3483, 2019 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-31375663

RESUMO

The growing demand for advanced lithium-ion batteries calls for the continued development of high-performance positive electrode materials. Polyoxyanion compounds are receiving considerable interest as alternative cathodes to conventional oxides due to their advantages in cost, safety and environmental friendliness. However, polyanionic cathodes reported so far rely heavily upon transition-metal redox reactions for lithium transfer. Here we show a polyanionic insertion material, Li2Fe(C2O4)2, in which in addition to iron redox activity, the oxalate group itself also shows redox behavior enabling reversible charge/discharge and high capacity without gas evolution. The current study gives oxalate a role as a family of cathode materials and suggests a direction for the identification and design of electrode materials with polyanionic frameworks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA