Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(17)2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37686141

RESUMO

The human leukocyte antigen (HLA)-B*27 family of alleles is strongly associated with ankylosing spondylitis (AS), a chronic inflammatory disorder affecting the axial and peripheral joints, yet some HLA-B*27 variants not associated with AS have been shown. Since no major differences in the ligandome of associated compared to not-associated alleles have emerged, a plausible hypothesis is that the quantity rather than the quality of the presented epitopes makes the difference. In addition, the Endoplasmic Reticulum AminoPeptidases (ERAPs) 1 and 2, playing a crucial role in shaping the HLA class I epitopes, act as strong AS susceptibility factors, suggesting that an altered peptidome might be responsible for the activation of pathogenic CD8+ T cells. In this context, we have previously singled out a B*27:05-restricted CD8+ T cell response against pEBNA3A (RPPIFIRRL), an EBV peptide lacking the B*27 classic binding motif. Here, we show that a specific ERAP1/2 haplotype negatively correlates with such response in B*27:05 subjects. Moreover, we prove that the B*27:05 allele successfully presents peptides with the same suboptimal N-terminal RP motif, including the self-peptide, pDYNEIN (RPPIFGDFL). Overall, this study underscores the cooperation between the HLA-B*27 and ERAP1/2 allelic variants in defining CD8+ T cell reactivity to suboptimal viral and self-B*27 peptides and prompts further investigation of the B*27:05 peptidome composition.


Assuntos
Genes MHC Classe I , Espondilite Anquilosante , Humanos , Haplótipos , Antígenos HLA-B/genética , Linfócitos T CD8-Positivos , Epitopos , Espondilite Anquilosante/genética , Aminopeptidases/genética , Antígenos de Histocompatibilidade Menor/genética
2.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35328795

RESUMO

CD8+ T lymphocytes are a heterogeneous class of cells that play a crucial role in the adaptive immune response against pathogens and cancer. During their lifetime, they acquire cytotoxic functions to ensure the clearance of infected or transformed cells and, in addition, they turn into memory lymphocytes, thus providing a long-term protection. During ageing, the thymic involution causes a reduction of circulating T cells and an enrichment of memory cells, partially explaining the lowering of the response towards novel antigens with implications in vaccine efficacy. Moreover, the persistent stimulation by several antigens throughout life favors the switching of CD8+ T cells towards a senescent phenotype contributing to a low-grade inflammation that is a major component of several ageing-related diseases. In genetically predisposed young people, an immunological stress caused by viral infections (e.g., HIV, CMV, SARS-CoV-2), autoimmune disorders or tumor microenvironment (TME) could mimic the ageing status with the consequent acceleration of T cell senescence. This, in turn, exacerbates the inflamed conditions with dramatic effects on the clinical progression of the disease. A better characterization of the phenotype as well as the functions of senescent CD8+ T cells can be pivotal to prevent age-related diseases, to improve vaccine strategies and, possibly, immunotherapies in autoimmune diseases and cancer.


Assuntos
Doenças Autoimunes , COVID-19 , Infecções por HIV , Neoplasias , Viroses , Antígenos CD28 , Linfócitos T CD8-Positivos , Senescência Celular , Infecções por HIV/tratamento farmacológico , Humanos , SARS-CoV-2 , Microambiente Tumoral
3.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348540

RESUMO

The strong association with the Major Histocompatibility Complex (MHC) class I genes represents a shared trait for a group of autoimmune/autoinflammatory disorders having in common immunopathogenetic basis as well as clinical features. Accordingly, the main risk factors for Ankylosing Spondylitis (AS), prototype of the Spondyloarthropathies (SpA), the Behçet's disease (BD), the Psoriasis (Ps) and the Birdshot Chorioretinopathy (BSCR) are HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02, respectively. Despite the strength of the association, the HLA pathogenetic role in these diseases is far from being thoroughly understood. Furthermore, Genome-Wide Association Studies (GWAS) have highlighted other important susceptibility factors such as Endoplasmic Reticulum Aminopeptidase (ERAP) 1 and, less frequently, ERAP2 that refine the peptidome presented by HLA class I molecules to CD8+ T cells. Mass spectrometry analysis provided considerable knowledge of HLA-B*27, HLA-B*51, HLA-C*06:02 and HLA-A*29:02 immunopeptidome. However, the combined effect of several ERAP1 and ERAP2 allelic variants could generate an altered pool of peptides accounting for the "mis-immunopeptidome" that ranges from suboptimal to pathogenetic/harmful peptides able to induce non-canonical or autoreactive CD8+ T responses, activation of NK cells and/or garbling the classical functions of the HLA class I molecules. This review will focus on this class of epitopes as possible elicitors of atypical/harmful immune responses which can contribute to the pathogenesis of chronic inflammatory diseases.


Assuntos
Aminopeptidases/genética , Síndrome de Behçet/imunologia , Coriorretinopatia de Birdshot/imunologia , Genes MHC Classe I , Antígenos de Histocompatibilidade Classe I/genética , Imunidade/genética , Antígenos de Histocompatibilidade Menor/genética , Psoríase/imunologia , Espondilite Anquilosante/imunologia , Alelos , Linfócitos T CD8-Positivos/imunologia , Humanos , Polimorfismo de Nucleotídeo Único
4.
J Immunol ; 196(4): 1955-63, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26773155

RESUMO

Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kß to T cell activation and show that CD28 induces the recruitment of PIP5Kß to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kß are pivotal for the PIP5Kß regulatory functions in response to CD28 stimulation.


Assuntos
Sinapses Imunológicas/imunologia , Ativação Linfocitária/imunologia , Microdomínios da Membrana/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/imunologia , Linfócitos T/imunologia , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Humanos , Processamento de Imagem Assistida por Computador , Isoenzimas/imunologia , Isoenzimas/metabolismo , Microscopia Confocal , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-vav/imunologia , Proteínas Proto-Oncogênicas c-vav/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T/enzimologia , Transfecção
5.
J Immunol ; 194(3): 1323-33, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25539813

RESUMO

Phosphatidylinositol 4,5-biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4(+) T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4-phosphate 5-kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.


Assuntos
Actinas/metabolismo , Antígenos CD28/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-vav/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígenos CD28/química , Antígenos CD28/genética , Comunicação Celular , Linhagem Celular , Ativação Enzimática , Expressão Gênica , Humanos , Mutação , Proteínas Oncogênicas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Domínios Proteicos Ricos em Prolina , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
7.
Cell Mol Life Sci ; 72(23): 4461-74, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26265181

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) represents about 1 % of plasma membrane phospholipids and behaves as a pleiotropic regulator of a striking number of fundamental cellular processes. In recent years, an increasing body of literature has highlighted an essential role of PIP2 in multiple aspects of leukocyte biology. In this emerging picture, PIP2 is envisaged as a signalling intermediate itself and as a membrane-bound regulator and a scaffold of proteins with specific PIP2 binding domains. Indeed PIP2 plays a key role in several functions. These include directional migration in neutrophils, integrin-dependent adhesion in T lymphocytes, phagocytosis in macrophages, lysosomes secretion and trafficking at immune synapse in cytolytic effectors and secretory cells, calcium signals and gene transcription in B lymphocytes, natural killer cells and mast cells. The coordination of these different aspects relies on the spatio-temporal organisation of distinct PIP2 pools, generated by the main PIP2 generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K). Three different isoforms of PIP5K, named α, ß and γ, and different splice variants have been described in leukocyte populations. The isoform-specific coupling of specific isoforms of PIP5K to different families of activating receptors, including integrins, Fc receptors, toll-like receptors and chemokine receptors, is starting to be reported. Furthermore, PIP2 is turned over by multiple metabolising enzymes including phospholipase C (PLC) γ and phosphatidylinositol 3-kinase (PI3K) which, along with Rho family small G proteins, is widely involved in strategic functions within the immune system. The interplay between PIP2, lipid-modifying enzymes and small G protein-regulated signals is also discussed.


Assuntos
Leucócitos/imunologia , Leucócitos/metabolismo , Fosfatidilinositol 4,5-Difosfato/fisiologia , Animais , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Mastócitos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Quinases/metabolismo , Transdução de Sinais
8.
J Immunol ; 190(10): 5279-86, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23589613

RESUMO

CD28 is one of the most relevant costimulatory receptors that deliver both TCR-dependent and TCR-independent signals regulating a wide range of signaling pathways crucial for cytokine and chemokine gene expressions, T cell survival, and proliferation. Most of the CD28-dependent signaling functions are initiated by the recruitment and activation of class IA PI3Ks, which catalyze the conversion of phosphatidylinositol 4,5-biphosphate (PIP2) into phosphatidylinositol 3,4,5-triphosphate, thus generating the docking sites for key signaling proteins. Hence, PIP2 is a crucial substrate in driving the PI3K downstream signaling pathways, and PIP2 turnover may be an essential regulatory step to ensure the activation of PI3K following CD28 engagement. Despite some data evidence that CD28 augments TCR-induced turnover of PIP2, its direct role in regulating PIP2 metabolism has never been assessed. In this study, we show that CD28 regulates PIP2 turnover by recruiting and activating phosphatidylinositol 4-phosphate 5-kinases α (PIP5Kα) in human primary CD4(+) T lymphocytes. This event leads to the neosynthesis of PIP2 and to its consumption by CD28-activated PI3K. We also evidenced that PIP5Kα activation is required for both CD28 unique signals regulating IL-8 gene expression as well as for CD28/TCR-induced Ca(2+) mobilization, NF-AT nuclear translocation, and IL-2 gene transcription. Our findings elucidate a novel mechanism that involves PIP5Kα as a key modulator of CD28 costimulatory signals.


Assuntos
Antígenos CD28/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Interleucina-2/genética , Interleucina-8/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cálcio/metabolismo , Células Cultivadas , Ativação Enzimática , Expressão Gênica , Humanos , Interleucina-8/genética , Ativação Linfocitária , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Interferência de RNA , RNA Interferente Pequeno , Transdução de Sinais
9.
Front Immunol ; 15: 1365074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510259

RESUMO

Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.


Assuntos
Antígenos CD28 , Superantígenos , Humanos , Células CACO-2 , Enterotoxinas , Citocinas
10.
Nat Cell Biol ; 8(11): 1270-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17060905

RESUMO

During physiological T-cell stimulation by antigen presenting cells (APCs), a major T-cell membrane rearrangement is known to occur leading to the organization of 'supramolecular activation clusters' at the immunological synapse. A possible role for the synapse is the generation of membrane compartments where signalling may be organized and propagated. Thus, engagement of the costimulatory molecule CD28 at the immunological synapse promotes the organization of a signalling compartment by inducing cytoskeletal changes and lipid raft accumulation. We identified the actin-binding protein Filamin-A (FLNa) as a novel molecular partner of CD28. We found that, after physiological stimulation, CD28 associated with and recruited FLNa into the immunological synapse, where FLNa organized CD28 signalling. FLNa knockdown by short interfering RNA (siRNA) inhibited CD28-mediated raft accumulation at the immunological synapse and T-cell costimulation. Together, our data indicate that CD28 binding to FLNa is required to induce the T-cell cytoskeletal rearrangements leading to recruitment of lipid microdomains and signalling mediators into the immunological synapse.


Assuntos
Antígenos CD28/metabolismo , Proteínas Contráteis/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Antígenos CD28/genética , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Proteínas Contráteis/genética , Citoesqueleto/metabolismo , Filaminas , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Microdomínios da Membrana/imunologia , Proteínas dos Microfilamentos/genética , Microscopia Confocal , Ligação Proteica , RNA Interferente Pequeno/genética , Linfócitos T/citologia , Técnicas do Sistema de Duplo-Híbrido
11.
FEMS Yeast Res ; 13(7): 682-8, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23875998

RESUMO

The tumor suppressor p53 plays a central role in the regulation of cellular growth and apoptosis. In the yeast Saccharomyces cerevisiae, the overexpression of the human p53 leads to growth inhibition and apoptotic cell death on minimal medium. In the present work, we show that p53-expressing cells are more susceptible to cell death after an apoptotic stimulus such as H2O2. The analysis of mutants involved in yeast apoptosis-like death suggests that the observed cell death is Yca1 independent and mainly mediated through Nuc1p.


Assuntos
Apoptose , Endonucleases/metabolismo , Exonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Caspases/metabolismo , Meios de Cultura/química , Expressão Gênica , Humanos , Peróxido de Hidrogênio/toxicidade , Saccharomyces cerevisiae/genética
12.
Front Immunol ; 14: 1170821, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37207220

RESUMO

Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.


Assuntos
Antígenos CD28 , Superantígenos , Inteligência Artificial , Staphylococcus/metabolismo , Células Apresentadoras de Antígenos/metabolismo , Receptores de Antígenos de Linfócitos T
14.
J Biol Chem ; 286(46): 39693-702, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21953469

RESUMO

Stress-induced monoubiquitination of p53 is a crucial event for the nuclear-cytoplasm-mitochondria trafficking and transcription-independent pro-apoptotic functions of p53. Although an intact ubiquitination pathway and a functional nuclear export sequence are required for p53 nuclear export, the role of specific residues within this region in regulating both processes remains largely unknown. Here we characterize the mechanisms accounting for the nuclear accumulation of a new point mutation (Lys-351 to Asn) in the nuclear export sequence of p53 identified in a cisplatin-resistant ovarian carcinoma cell line (A2780 CIS). We found that K351N substitution abrogates the monoubiquitination of p53 induced by both Mdm2 and MSL2 E3-ligases. As a consequence, cells expressing p53 K351N mutant showed defects in cisplatin-induced translocation of p53 to mitochondria, Bax oligomerization, and mitochondrial membrane depolarization. These data identify K351N as a critical mutation of p53 that contributes to the development and maintenance of resistance to cisplatin.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Neoplasias Ovarianas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ubiquitinação , Substituição de Aminoácidos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cisplatino/farmacologia , Feminino , Humanos , Potencial da Membrana Mitocondrial/genética , Mitocôndrias/genética , Sinais de Exportação Nuclear/genética , Neoplasias Ovarianas/genética , Transporte Proteico/genética , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
15.
Front Immunol ; 13: 824411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211120

RESUMO

Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.


Assuntos
Astrócitos/fisiologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Humanos , Inflamação/imunologia , Linfócitos T Auxiliares-Indutores/classificação
16.
Cells ; 11(16)2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010602

RESUMO

Multisystem inflammatory syndrome in children (MIS-C) is a rare hyperinflammatory disease occurring several weeks after SARS-CoV-2 infection. The clinical similarities between MIS-C and the toxic shock syndrome, together with the preferential expansion of T cells with a T-cell receptor variable ß chain (TCRVß) skewing, suggested a superantigen theory of MIS-C. For instance, recent in silico modelling evidenced the presence of a highly conserved motif within SARS-CoV-2 spike protein similar in structure to the superantigenic fragment of staphylococcal enterotoxin B (SEB). However, experimental data on the superantigenic activity of the SARS-CoV-2 spike have not yet been provided. Here, we assessed the superantigenic activity of the SARS-CoV-2 spike by analysing inflammatory cytokine production in both Jurkat cells and the peripheral blood CD4+ T cells stimulated with the SARS-CoV-2 spike or SEB as a control. We found that, unlike SEB, the SARS-CoV-2 spike does not exhibit an intrinsic superantigen-like activity.


Assuntos
COVID-19 , Superantígenos , COVID-19/complicações , Criança , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Síndrome de Resposta Inflamatória Sistêmica
17.
Front Immunol ; 12: 723689, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34489975

RESUMO

The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR- and CD28-mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signalling.


Assuntos
Antígenos CD28/imunologia , Enterotoxinas/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Apresentadoras de Antígenos/imunologia , Comunicação Celular , Células Cultivadas , Humanos , Ativação Linfocitária , Transdução de Sinais , Linfócitos T/imunologia
18.
Cells ; 9(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093011

RESUMO

Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.


Assuntos
Esclerose Múltipla/imunologia , Doenças Neurodegenerativas/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Barreira Hematoencefálica/imunologia , Humanos , Imunoterapia/métodos , Inflamação/imunologia , Interferon beta/metabolismo , Interferon beta/uso terapêutico , Terapia de Alvo Molecular/métodos , Esclerose Múltipla/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/classificação , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
19.
Front Immunol ; 11: 590964, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178223

RESUMO

IL-22 is a member of the IL-10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL-22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co-stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signaling receptor and to induce the expression of IL-17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL-22. Here we characterized the role of CD28 autonomous signaling in regulating IL-22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up-regulates IL-22 gene expression and secretion. As recently observed for IL-17A, we also found that CD28-mediated regulation of IL-22 transcription requires the cooperative activities of both IL-6-activated STAT3 and RelA/NF-κB transcription factors. CD28-mediated IL-22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28-associated class 1A phosphatidylinositol 3-kinase (PI3K) as a pivotal mediator of CD28-mediated IL-22 expression and IL-22-dependent epithelial cell barrier functions.


Assuntos
Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Interleucinas/imunologia , Células CACO-2 , Humanos , Metaloproteinase 9 da Matriz/imunologia , Mucina-1/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Transdução de Sinais , Interleucina 22
20.
Mol Cancer Ther ; 7(6): 1410-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18566213

RESUMO

Several studies in the last years evidenced that deregulation of proapoptotic and antiapoptotic pathways are key players in the onset and maintenance of chemoresistance in advanced ovarian cancers. To characterize the signaling events and molecules involved in the acquisition of cisplatin resistance, we used the human ovarian cancer cell line A2780 and its derivative cisplatin-resistant subline A2780 CIS. We found that the mitochondrial intrinsic apoptotic pathway, induced by cis-dichlorodiammineplatinum (CDDP) in A2780 wild-type cells, was compromised in the resistant subline CIS. The analysis of expression of proteins involved in mitochondria-dependent apoptosis revealed a role of Bax and p73 but not p53. Indeed, we found that CDDP treatment induced the up-regulation of p53 in both sensitive and resistant A2780 cell lines. By contrast, p73 and Bax expressions were compromised in resistant cells. Pretreatment of resistant A2780 CIS cells with the histone deacetylase inhibitor trichostatin A overcomes apoptosis resistance to CDDP by restoring both p73 and Bax but not p53 expression. Altogether, these data indicate that p73, but not p53, is involved in the regulation of apoptosis susceptibility to cisplatin in A2780 ovarian cancer cells and evidence a key contribution of histone deacetylase activation in the acquisition of chemotherapy resistance in human ovarian cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Proteínas Nucleares/genética , Neoplasias Ovarianas/patologia , Proteínas Supressoras de Tumor/genética , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo , Sequência de Bases , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cisplatino/farmacologia , Citocromos c/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dados de Sequência Molecular , Proteína Supressora de Tumor p53/metabolismo , Proteína X Associada a bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA