Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemosphere ; 73(5): 751-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18656227

RESUMO

Modified zero valent iron (MZVI) was used to study the transformation of a chlorothalonil (CLT) solution and the variation of the observed degradation rate of the reduction reactions. This was carried out when transition metals e.g. Pd, Cu and Co plated on the surface of micrometric iron particles (< 150 microm) were used as reducing catalytic agents for pesticide removal. Reactions were undertaken under both oxic and anoxic conditions in the presence and the absence of a phosphate buffer solution (PBS). Results of batch studies in nitrogen sparged solutions revealed that incomplete slow dechlorination merely occurred with zero valent iron (ZVI), however, complete rapid dechlorination reactions took place with MZVI especially Fe/Pd. Dechlorination was depicted by studying UV absorbance and MS spectra of CLT and all corresponding by-products. Typical blue shifts (deltalambda = 4-6 nm/chlorine atom) were observed at the same time as chlorine cluster isotopes disappeared. After the plating process, metal loading was controlled by analyzing the remaining metal in the solution by atomic absorption spectroscopy. Experiments showed that CLT degradation mechanism is faster in nitrogen sparged solutions in the absence of PBS. Time needed for complete removal of 2.08 +/- 0.19 microM CLT solution was about 2 h when experiments were conducted with ZVI (t1/2 = 15.0 min) and about 10 min when the reaction was carried out under the same conditions with Fe/Pd 1% (t1/2 = 1.0 min). Degradation rates for all bimetallic systems were determined showing that Pd is the more exciting catalytic transition metal followed by Cu and Co. Furthermore, MZVI method showed obvious advantage to traditional CLT treatment methods.


Assuntos
Fungicidas Industriais/química , Ferro/química , Nitrilas/química , Purificação da Água/métodos , Água/química , Catálise , Cinética , Espectrometria de Massas , Espectrofotometria Atômica
2.
J Hazard Mater ; 176(1-3): 48-55, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19944526

RESUMO

Since the introduction of iron wall technology, the inherent relationship between contaminant removal and iron corrosion has been mostly attributed to electron transfer from the metal body (direct reduction). This thermodynamically founded premise has failed to explain several experimental facts. Recently, a new concept considering adsorption and co-precipitation as fundamental contaminant removal mechanisms was introduced. This consistent concept has faced very skeptic views and necessarily needs experimental validation. The present work was the first independent attempt to validate the new concept using clofibric acid (CLO) as model compound. For this purpose, a powdered Fe(0) material (Fe(0)) was used in CLO removal experiments under various experimental conditions. Additional experiments were performed with plated Fe(0) (mFe(0): Fe(0)/Pd(0), Fe(0)/Ni(0)) to support the discussion of removal mechanism. Main investigated experimental variables included: abundance of O(2), abundance of iron corrosion products (ICPs) and shaking operations. Results corroborated the concept that quantitative contaminant removal in Fe(0)/H(2)O systems occurs within the oxide-film in the vicinity of Fe(0). Additionally, mixing type and shaking intensity significantly influenced the extent of CLO removal. More importantly, HPLC/MS revealed that the identity of reaction products depends on the extent of iron corrosion or the abundance of ICPs. The investigation of the CLO/Fe(0)/H(2)O system disproved the popular view that direct reduction mediates contaminant removal in the presence of Fe(0).


Assuntos
Ácido Clofíbrico/química , Ferro/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Oxirredução , Água
3.
J Hazard Mater ; 164(2-3): 665-74, 2009 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18819749

RESUMO

Palladium, ruthenium and silver were investigated as catalysts for the dechlorination of dichlorophen (DCP, 2,2'-methylenebis(4-chlorophenol)), an antimicrobial and anthelmintic agent largely used as algicide, fungicide and bactericide. Experiments were undertaken under oxic and anoxic conditions for experimental durations up to 180 min (3h). The anoxic conditions were achieved by purging the solutions with nitrogen gas. Reactions were performed in a 12+/-0.5 mg L(-1) DCP solution (V=20 mL) using 0.8 g of Fe(0) (40 g L(-1)). Along with micrometric Fe(0), five Fe(0)-plated systems were investigated: Pd (1%), Ru (0.01%), Ru (0.1%), Ru (1%) and Ag (1%). Metal plating was controlled by atomic absorption spectroscopy. DCP degradation was monitored using: (i) two HPLC devices, (ii) ion chromatography, (iii) UV and fluorescence spectrophotometry. Results indicated: (i) total dechlorination with Fe/Pd, (ii) partial dechlorination (40%) with Fe/Ru, and no reaction with Fe/Ag. DCP is vanished completely after 90 min of contact with Fe/Pd following a first order kinetic. The observed degradation rate k(obs) was about (3.98+/-0.10)x10(-2)min(-1), the calculated half-life t(1/2) about 17.4+/-0.9 min and a t(50) about 10.1+/-0.5 min. A DCP degradation pathway map was also proposed.


Assuntos
Anti-Infecciosos/química , Diclorofeno/química , Recuperação e Remediação Ambiental/métodos , Purificação da Água/métodos , Catálise , Halogenação , Cinética , Metais , Paládio , Rutênio , Prata , Poluentes Químicos da Água/química
4.
Environ Pollut ; 157(5): 1626-35, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19168269

RESUMO

Zerovalent iron powder (ZVI or Fe(0)) and nanoparticulate ZVI (nZVI or nFe(0)) are proposed as cost-effective materials for the removal of aqueous antibiotics. Results showed complete removal of Amoxicillin (AMX) and Ampicillin (AMP) upon contact with Fe(0) and nFe(0). Antibiotics removal was attributed to three different mechanisms: (i) a rapid rupture of the beta-lactam ring (reduction), (ii) an adsorption of AMX and AMP onto iron corrosion products and (iii) sequestration of AMX and AMP in the matrix of precipitating iron hydroxides (co-precipitation with iron corrosion products). Kinetic studies demonstrated that AMP and AMX (20 mg L(-1)) undergo first-order decay with half-lives of about 60.3+/-3.1 and 43.5+/-2.1 min respectively after contact with ZVI under oxic conditions. In contrast, reactions under anoxic conditions demonstrated better degradation with t(1/2) of about 11.5+/-0.6 and 11.2+/-0.6 min for AMP and AMX respectively. NaCl additions accelerated Fe(0) consumption, shortening the service life of Fe(0) treatment systems.


Assuntos
Antibacterianos , Ferro/farmacologia , Poluentes Químicos da Água , Purificação da Água/métodos , Amoxicilina/análise , Amoxicilina/química , Ampicilina/análise , Ampicilina/química , Antibacterianos/análise , Antibacterianos/química , Concentração de Íons de Hidrogênio , Nanopartículas , Tamanho da Partícula , Fatores de Tempo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA