Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(9): 1688-1703, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37552618

RESUMO

The employment of metal-organic framework (MOF)-based nanomaterials has been rapidly increasing in bioapplications owing to their biocompatibility, drug degradation, tunable porosity, and intrinsic biodegradability. This evidence suggests that the multifunctional bimetallic ions can behave as remarkable candidates for infection control and wound healing. In this study, bimetallic MOFs (Zn-HKUST-1 and FolA-Zn-HKUST-1) embedded with and without folic acid were synthesized and used for tissue sealing and repairing incisional wound sites in mice models. For comparison, HKUST-1 and FolA-HKUST-1 were also synthesized. The Brunauer-Emmett-Teller (BET) surface area measured for HKUST-1, FolA-HKUST-1, Zn-HKUST-1, and FolA-Zn-HKUST-1 from N2 isotherms was found to be 1868, 1392, 1706, and 1179 m2/g, respectively. The measurements of contact angle values for Zn-HKUST-1, FolA-HKUST-1, and Zn-FolA-HKUST-1 were identified as 4.95 ± 0.8, 43.6 ± 3.4, and 60.62 ± 2.0°, respectively. For topical application in wound healing, they display a wide range of healing characteristics, including antibacterial and enhanced wound healing rates. In addition, in vitro cell migration and tubulogenic potentials were evaluated. The significant reduction in the wound gap and increased expression levels for CD31, eNOS, VEGF-A, and Ki67 were observed from immunohistological analyses to predict the angiogenesis behavior at the incision wound site. The wound healing rate was analyzed in the excisional dermal wounds of diabetic mice model in vivo. On account of antibacterial potentials and tissue-repairing characteristics of Cu2+ and Zn2+ ions, designing an innovative mixed metal ion-based biomaterial has wide applicability and is expected to modulate the growth of various gradient tissues.


Assuntos
Diabetes Mellitus Experimental , Estruturas Metalorgânicas , Camundongos , Animais , Estruturas Metalorgânicas/uso terapêutico , Cobre/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Zinco/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias
2.
Cancer Cell Int ; 23(1): 292, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001420

RESUMO

BACKGROUND: Despite intensive developments of adoptive T cell and NK cell therapies, the efficacy against solid tumors remains elusive. Our study demonstrates that macrophage-based cell therapy could be a potent therapeutic option against solid tumors. METHODS: To this end, we determine the effect of a natural triterpene glycoside, cucumarioside A2-2 (CA2-2), on the polarization of mouse macrophages into the M1 phenotype, and explore the antitumor activity of the polarized macrophage. The polarization of CA2-2-pretreated macrophages was analyzed by flow cytometry and confocal imaging. The anti-cancer activity of CA2-2 macrophages was evaluated against 4T1 breast cancer cells and EAC cells in vitro and syngeneic mouse model in vivo. RESULTS: Incubation of murine macrophages with CA2-2 led to polarization into the M1 phenotype, and the CA2-2-pretreated macrophages could selectively target and kill various types of cancer in vitro. Notably, loading near-infrared (NIR) fluorochrome-labeled nanoparticles, MnMEIO-mPEG-CyTE777, into macrophages substantiated that M1 macrophages can target and penetrate tumor tissues in vivo efficiently. CONCLUSION: In this study, CA2-2-polarized M1 macrophages significantly attenuated tumor growth and prolonged mice survival in the syngeneic mouse models. Therefore, ex vivo CA2-2 activation of mouse macrophages can serve as a useful model for subsequent antitumor cellular immunotherapy developments.

3.
J Biomed Sci ; 30(1): 35, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37259079

RESUMO

BACKGROUND: Cancer-specific adoptive T cell therapy has achieved successful milestones in multiple clinical treatments. However, the commercial production of cancer-specific T cells is often hampered by laborious cell culture procedures, the concern of retrovirus-based gene transfection, or insufficient T cell purity. METHODS: In this study, we developed a non-genetic engineering technology for rapidly manufacturing a large amount of cancer-specific T cells by utilizing a unique anti-cancer/anti-CD3 bispecific antibody (BsAb) to directly culture human peripheral blood mononuclear cells (PBMCs). The anti-CD3 moiety of the BsAb bound to the T cell surface and stimulated the differentiation and proliferation of T cells in PBMCs. The anti-cancer moiety of the BsAb provided these BsAb-armed T cells with the cancer-targeting ability, which transformed the naïve T cells into cancer-specific BsAb-armed T cells. RESULTS: With this technology, a large amount of cancer-specific BsAb-armed T cells can be rapidly generated with a purity of over 90% in 7 days. These BsAb-armed T cells efficiently accumulated at the tumor site both in vitro and in vivo. Cytotoxins (perforin and granzyme) and cytokines (TNF-α and IFN-γ) were dramatically released from the BsAb-armed T cells after engaging cancer cells, resulting in a remarkable anti-cancer efficacy. Notably, the BsAb-armed T cells did not cause obvious cytokine release syndrome or tissue toxicity in SCID mice bearing human tumors. CONCLUSIONS: Collectively, the BsAb-armed T cell technology represents a simple, time-saving, and highly safe method to generate highly pure cancer-specific effector T cells, thereby providing an affordable T cell immunotherapy to patients.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Neoplasias , Camundongos , Animais , Humanos , Linfócitos T , Leucócitos Mononucleares , Camundongos SCID , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/uso terapêutico , Neoplasias/terapia , Neoplasias/tratamento farmacológico , Antineoplásicos/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499283

RESUMO

Autoimmune hypophysitis (AH) is an autoimmune disease of the pituitary for which the pathogenesis is incompletely known. AH is often treated with corticosteroids; however, steroids may lead to considerable side effects. Using a mouse model of AH (experimental autoimmune hypophysitis, EAH), we show that interleukin-1 receptor-associated kinase 1 (IRAK1) is upregulated in the pituitaries of mice that developed EAH. We identified rosoxacin as a specific inhibitor for IRAK1 and found it could treat EAH. Rosoxacin treatment at an early stage (day 0-13) slightly reduced disease severity, whereas treatment at a later stage (day 14-27) significantly suppressed EAH. Further investigation indicated rosoxacin reduced production of autoantigen-specific antibodies. Rosoxacin downregulated production of cytokines and chemokines that may dampen T cell differentiation or recruitment to the pituitary. Finally, rosoxacin downregulated class II major histocompatibility complex expression on antigen-presenting cells that may lead to impaired activation of autoantigen-specific T cells. These data suggest that IRAK1 may play a pathogenic role in AH and that rosoxacin may be an effective drug for AH and other inflammatory diseases involving IRAK1 dysregulation.


Assuntos
Hipofisite Autoimune , Quinases Associadas a Receptores de Interleucina-1 , Autoantígenos , Hipofisite Autoimune/terapia , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Animais , Camundongos
5.
Cytokine ; 113: 340-346, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30352759

RESUMO

BACKGROUND: Inhibiting TNF-α is an effective therapy for inflammatory diseases such as rheumatoid arthritis. However, systemic, nondiscriminatory neutralization of TNF-α is associated with considerable adverse effects. METHODS: Here, we developed a trimeric chimeric TNF receptor by linking an N-terminal mouse Acrp30 trimerization domain and an MMP-2/9 substrate sequence to the mouse extracellular domain of TNF receptor 2 followed by a C-terminal mouse tetranectin coiled-coil domain (mouse Acrp-MMP-TNFR-Tn). RESULTS: Here, we show that the Acrp30 trimerization domain inhibited the binding activity of TNFR, possibly by closing the binding site of the trimeric receptor. Cleavage of the substrate sequence by MMP-9, an enzyme highly expressed in inflammatory sites, restored the binding activity of the mouse TNF receptor. We also constructed a recombinant human chimeric TNF receptor (human Acrp-MMP-TNFR-Tn) in which an MMP-13 substrate sequence was used to link the human Acrp and the human TNF receptor 2. Human Acrp-MMP-TNFR-Tn showed reduced binding activity, and MMP-13 digestion recovered its binding activity with TNF-α. CONCLUSION: Acrp-masked chimeric TNF receptors may be able to be used for inflammatory tissue-selective neutralization of TNF-α to reduce the adverse effects associated with systemic neutralization of TNF-α.


Assuntos
Adiponectina , Metaloproteinase 13 da Matriz , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Multimerização Proteica , Receptores Tipo II do Fator de Necrose Tumoral , Proteínas Recombinantes de Fusão , Fator de Necrose Tumoral alfa , Adiponectina/química , Adiponectina/genética , Adiponectina/metabolismo , Animais , Linhagem Celular , Humanos , Metaloproteinase 13 da Matriz/química , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/química , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Especificidade de Órgãos , Ligação Proteica , Domínios Proteicos , Receptores Tipo II do Fator de Necrose Tumoral/química , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/química , Fator de Necrose Tumoral alfa/metabolismo
6.
Nanomedicine ; 15(1): 285-294, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391483

RESUMO

A novel EGFR-targeting, thermal-sensitive multifunctional liposome (TSML) was developed based on manganese-doped magnetism-engineered iron oxide nanoparticles (MnMEIOs) and gold nanorods (AuNRs) for efficient photothermal therapy and magnetic resonance (MR) imaging. An Erbitux-conjugated TSML (Erb-TSML) was encapsulated with doxorubicin and gold nanorods conjugated with manganese-doped magnetism-engineered iron oxide nanoparticles, for theranostic applications of EGFR-positive tumors. The Erb-TSML selectively targeted EGFR-positive tumors and promoted tumor destruction by laser activation. Using confocal microscopy, MR and optical imaging, we demonstrated that Erb-TSML specifically bound to A431 tumor cells. No signs of major morphological damages to the normal tissues were observed in mice treated with Erb-TSML and laser, indicating this theranostic platform protected heart against doxorubicin-induced toxicity to normal tissues. These results indicate that the Erb-TSML may be a promising diagnostic and therapeutic platform for EGFR-overexpressing tumors.


Assuntos
Imunoconjugados/farmacologia , Lasers , Lipossomos/administração & dosagem , Neoplasias Pulmonares/tratamento farmacológico , Nanopartículas de Magnetita/administração & dosagem , Nanotubos/química , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacologia , Apoptose , Proliferação de Células , Cetuximab/administração & dosagem , Cetuximab/química , Cetuximab/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/química , Doxorrubicina/farmacologia , Receptores ErbB/antagonistas & inibidores , Ouro/química , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Lipossomos/química , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Nanopartículas de Magnetita/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Óptica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biol Proced Online ; 20: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29743821

RESUMO

BACKGROUND: Gastric cancer is currently the fourth leading cause of cancer-related death worldwide. Gastric cancer is often diagnosed at advanced stages and the outcome of the treatment is often poor. Therefore, identifying new therapeutic targets for this cancer is urgently needed. Integrin alpha 2 (ITGA2) subunit and the beta 1 subunit form a heterodimer for a transmembrane receptor for extracellular matrix, is an important molecule involved in tumor cell proliferation, survival and migration. Integrin α2ß1 is over-expressed on a variety of cancer cells, but is low or absent in most normal organs and resting endothelial cells. RESULTS: In this report, we assessed the ITGA2 as the potential therapeutic target with the bioinformatics tools from the TCGA dataset in which composed of 375 gastric cancer tissues and 32 gastric normal tissues. According to the information from the Cancer Cell Line Encyclopedia (CCLE) database, the AGS cell line with ITGA2 high expression and the SUN-1 cell line with low expression were chosen for the further investigation. Interestingly, the anti-ITGA2 antibody (at 3 µg/ml) inhibited approximately 50% survival of the AGS cells (over-expressed ITGA2), but had no effect in SNU-1 cells (ITGA2 negative). The extents of antibody-mediated cancer inhibition positively correlated with the expression levels of the ITGA2. We further showed that the anti-ITGA2 antibody induced apoptosis by up-regulating the RhoA-p38 MAPK signaling to promote the expressions of Bim, Apaf-1 and Caspase-9, whereas the expressions of Ras and Bax/Bcl-2 were not affected. Moreover, blocking ITGA2 by the specific antibody at lower doses also inhibited cell migration of gastric cancer cells. Blockade of ITGA2 by a specific antibody down-regulated the expression of N-WASP, PAK and LIMK to impede actin organization and cell migration of gastric cancer cells. CONCLUSIONS: Here, we showed that the mRNA expression levels of ITGA2 comparing to normal tissues significantly increased. In addition, the results revealed that targeting integrin alpha 2 subunit by antibodies did not only inhibit cell migration, but also induce apoptosis effect on gastric cancer cells. Interestingly, higher expression level of ITGA2 led to significant effects on apoptosis progression during anti-ITGA2 antibody treatment, which indicated that ITGA2 expression levels directly correlate with their functionality. Our findings suggest that ITGA2 is a potential therapeutic target for gastric cancer.

8.
Int J Mol Sci ; 16(2): 3202-12, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25648320

RESUMO

Akt acts as a pivotal regulator in the PI3K/Akt signaling pathway and represents a potential drug target for cancer therapy. To search for new inhibitors of Akt kinase, we performed a structure-based virtual screening using the DOCK 4.0 program and the X-ray crystal structure of human Akt kinase. From the virtual screening, 48 compounds were selected and subjected to the Akt kinase inhibition assay. Twenty-six of the test compounds showed more potent inhibitory effects on Akt kinase than the reference compound, H-89. These 26 compounds were further evaluated for their cytotoxicity against HCT-116 human colon cancer cells and HEK-293 normal human embryonic kidney cells. Twelve compounds were found to display more potent or comparable cytotoxic activity compared to compound H-89 against HCT-116 colon cancer cells. The best results were obtained with Compounds a46 and a48 having IC50 values (for HCT-116) of 11.1 and 9.5 µM, respectively, and selectivity indices (IC50 for HEK-293/IC50 for HCT-116) of 12.5 and 16.1, respectively. Through structure-based virtual screening and biological evaluations, we have successfully identified several new Akt inhibitors that displayed cytotoxic activity against HCT-116 human colon cancer cells. Especially, Compounds a46 and a48 may serve as useful lead compounds for further development of new anticancer agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Simulação por Computador , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/química , Sítios de Ligação , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
9.
Artigo em Inglês | MEDLINE | ID: mdl-38289841

RESUMO

Attention deficit hyperactivity disorder (ADHD) is a chronic neurological and psychiatric disorder that affects children during their development. To find neural patterns for ADHD and provide subjective features as decision references to assist specialists and physicians. Many studies have been devoted to investigating the neural dynamics of the brain through resting-state or continuous performance tests (CPT) with EEG or functional magnetic resonance imaging (fMRI). The present study used coherence, which is one of the functional connectivity (FC) methods, to analyze the neural patterns of children and adolescents (8-16 years old) under CPT and continuous auditory test of attention (CATA) task. In the meantime, electroencephalography (EEG) oscillations were recorded by a wireless brain-computer interface (BCI). 72 children were enrolled, of which 53 participants were diagnosed with ADHD and 19 presented to be typical developing (TD). The experimental results exhibited a higher difference in alpha and theta bands between the TD group and the ADHD group. While the differences between the TD group and the ADHD group in all four frequency domains were greater than under CPT conditions. Statistically significant differences ( [Formula: see text]) were observed between the ADHD and TD groups in the alpha rhythm during the CATA task in the short-range of coherence. For the temporal lobe FC during the CATA task, the TD group exhibited statistically significantly FC ( [Formula: see text]) in the alpha rhythm compared to the ADHD group. These findings offering new possibilities for more techniques and diagnostic methods in finding more ADHD features. The differences in alpha and beta frequencies were more pronounced in the ADHD group during the CPT task compared to the CATA task. Additionally, the disparities in brain activity were more evident across delta, theta, alpha and beta frequency domains when the task given was a CATA as opposed to a CPT. The findings presented the underlying mechanisms of the FC differences between children and adolescents with ADHD. Moreover, these findings should extend to use machine learning approaches to assist the ADHD classification and diagnosis.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico , Encéfalo , Eletroencefalografia/métodos , Ritmo alfa , Testes Neuropsicológicos
10.
Artigo em Inglês | MEDLINE | ID: mdl-38683718

RESUMO

Sleep is vital to our daily activity. Lack of proper sleep can impair functionality and overall health. While stress is known for its detrimental impact on sleep quality, the precise effect of pre-sleep stress on subsequent sleep structure remains unknown. This study introduced a novel approach to study the pre-sleep stress effect on sleep structure, specifically slow-wave sleep (SWS) deficiency. To achieve this, we selected forehead resting EEG immediately before and upon sleep onset to extract stress-related neurological markers through power spectra and entropy analysis. These markers include beta/delta correlation, alpha asymmetry, fuzzy entropy (FuzzEn) and spectral entropy (SpEn). Fifteen subjects were included in this study. Our results showed that subjects lacking SWS often exhibited signs of stress in EEG, such as an increased beta/delta correlation, higher alpha asymmetry, and increased FuzzEn in frontal EEG. Conversely, individuals with ample SWS displayed a weak beta/delta correlation and reduced FuzzEn. Finally, we employed several supervised learning models and found that the selected neurological markers can predict subsequent SWS deficiency. Our investigation demonstrated that the classifiers could effectively predict varying levels of slow-wave sleep (SWS) from pre-sleep EEG segments, achieving a mean balanced accuracy surpassing 0.75. The SMOTE-Tomek resampling method could improve the performance to 0.77. This study suggests that stress-related neurological markers derived from pre-sleep EEG can effectively predict SWS deficiency. Such information can be integrated with existing sleep-improving techniques to provide a personalized sleep forecasting and improvement solution.


Assuntos
Algoritmos , Eletroencefalografia , Entropia , Sono de Ondas Lentas , Humanos , Eletroencefalografia/métodos , Masculino , Feminino , Sono de Ondas Lentas/fisiologia , Adulto , Adulto Jovem , Estresse Psicológico/fisiopatologia , Ritmo alfa/fisiologia , Previsões , Ritmo beta/fisiologia , Ritmo Delta , Privação do Sono/fisiopatologia , Reprodutibilidade dos Testes
11.
Bioconjug Chem ; 24(8): 1408-13, 2013 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-23837865

RESUMO

Attachment of poly(ethylene glycol) to proteins can mask immune epitopes to increase serum half-life, reduce immunogenicity, and enhance in vivo biological efficacy. However, PEGylation mediated epitope-masking may also limit sensitivity and accuracy of traditional ELISA. We previously described an anti-PEG-based sandwich ELISA for universal assay of PEGylated molecules. Here, we compared the quantitative assessment of PEGylated interferons by anti-PEG and traditional anti-interferon sandwich ELISA. The detection limits for PEG-Intron (12k-PEG) and Pegasys (40k-PEG) were 1.9 and 0.03 ng/mL for anti-PEG ELISA compared to 0.18 and 0.42 ng/mL for traditional anti-interferon sandwich ELISA. These results indicate that the anti-PEG sandwich ELISA was insensitive to PEGylation mediated epitope-masking and the sensitivity increased in proportion to the length of PEG. By contrast, PEG-masking interfered with detection by traditional anti-interferon sandwich ELISA. Human and mouse serum did not affect the sensitivity of anti-PEG ELISA but impeded traditional anti-interferon sandwich ELISA. The anti-PEG sandwich ELISA was comparable to anti-interferon sandwich ELISA and radioassay of 131I-Pegasys in pharmacokinetic studies in mice. The anti-PEG sandwich ELISA provides a sensitive, accurate, and convenient quantitative measurement of PEGylated protein drugs.


Assuntos
Anticorpos/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Interferons/análise , Interferons/química , Polietilenoglicóis/química , Animais , Feminino , Humanos , Interferons/sangue , Camundongos , Polietilenoglicóis/farmacocinética
12.
Sci Rep ; 13(1): 7861, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188786

RESUMO

This study aimed to integrate magnetic resonance imaging (MRI) and related somatosensory evoked potential (SSEP) features to assist in the diagnosis of spinal cord compression (SCC). MRI scans were graded from 0 to 3 according to the changes in the subarachnoid space and scan signals to confirm differences in SCC levels. The amplitude, latency, and time-frequency analysis (TFA) power of preoperative SSEP features were extracted and the changes were used as standard judgments to detect neurological function changes. Then the patient distribution was quantified according to the SSEP feature changes under the same and different MRI compression grades. Significant differences were found in the amplitude and TFA power between MRI grades. We estimated three degrees of amplitude anomalies and power loss under each MRI grade and found the presence or absence of power loss occurs after abnormal changes in amplitude only. For SCC, few integrated approach combines the advantages of both MRI and evoked potentials. However, integrating the amplitude and TFA power changes of SSEP features with MRI grading can help in the diagnosis and speculate progression of SCC.


Assuntos
Compressão da Medula Espinal , Humanos , Compressão da Medula Espinal/diagnóstico por imagem , Potenciais Somatossensoriais Evocados/fisiologia , Monitorização Intraoperatória/métodos , Medula Espinal
13.
ACS Omega ; 8(43): 40911-40920, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929112

RESUMO

The antitumor effects elicited by immune checkpoint inhibitors (ICIs) have transformed cancer treatments. However, severe immune-related adverse events (irAEs) resulting from these treatments have restricted the application of ICIs. To overcome the adverse events, we developed a tumor lesion-selective pro-PD-1Ig that is activated by proteases overexpressed in tumors. We genetically linked albumin to the N-terminus of a modified PD-1Ig (termed mutPD-1Ig hereafter) via an MMP substrate sequence to form Alb-hinge-mutPD-1Ig. We demonstrate that the binding activity of nondigested Alb-hinge-mutPD-1Ig is approximately 11-folds lower than mutPD-1Ig. However, digestion by type IV collagenase restored the binding activity of Alb-hinge-mutPD-1Ig to a level comparable to that of native mutPD-1Ig. In order to enhance the masking efficiency of Alb-mutPD-1Ig, we simulated the effects of diverse MMP substrate linkers for connecting albumin and PD-1 at various starting positions by bioinformatics tools. Our validation experiments indicate Alb-hinge-mutPD-1Ig displayed the best masking efficiency among all simulated constructs. Our study suggests that albumin may be best applicable to mask a target protein whose binding motif is centralized and in the proximity of the N-terminus of the protein.

14.
Oncol Lett ; 25(1): 42, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36589668

RESUMO

Lung cancer is one of the leading causes of cancer mortality worldwide. As it is often first diagnosed only when cancer metastasis has already occurred, the development of effective biomarkers for the risk prediction of cancer metastasis, followed by stringent monitoring and the early treatment of high-risk patients, is essential for improving patient survival. Cancer cells exhibit alterations in metabolic pathways that enable them to maintain rapid growth and proliferation, which are quite different from the metabolic pathways of normal cells. Fumarate hydratase (FH, fumarase) is a well-known tricarboxylic acid cycle enzyme that catalyzes the reversible hydration/dehydration of fumarate to malate. The current study sought to investigate the relationship between FH expression levels and the outcome of patients with lung cancer. FH was knocked down in lung cancer cells using shRNA or overexpressed using a vector, and the effect on migration ability was assessed. Furthermore, the role of AMP-activated protein kinase (AMPK) phosphorylation and disabled homolog 2 in the underlying mechanism was investigated using an AMPK inhibitor approach. The results showed that in lung cancer tissues, low FH expression was associated with lymph node metastasis, tumor histology and recurrence. In addition, patients with low FH expression exhibited a poor overall survival in comparison with patients having high FH expression. When FH was overexpressed in lung cancer cells, cell migration was reduced with no effect on cell proliferation. Furthermore, the level of phosphorylated (p-)AMPK, an energy sensor molecule, was upregulated when FH was knocked down in lung cancer cells, and the inhibition of p-AMPK led to an increase in the expression of disabled homolog 2, a tumor suppressor protein. These findings suggest that FH may serve as an effective biomarker for predicting the prognosis of lung cancer and as a therapeutic mediator.

15.
ACS Nano ; 17(19): 19033-19051, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37737568

RESUMO

Selective autophagy is a defense mechanism by which foreign pathogens and abnormal substances are processed to maintain cellular homeostasis. Sequestosome 1 (SQSTM1)/p62, a vital selective autophagy receptor, recruits ubiquitinated cargo to form autophagosomes for lysosomal degradation. Nab-PTX is an albumin-bound paclitaxel nanoparticle used in clinical cancer therapy. However, the role of SQSTM1 in regulating the delivery and efficacy of nanodrugs remains unclear. Here we showed that SQSTM1 plays a crucial role in Nab-PTX drug delivery and efficacy in human lung and colorectal cancers. Nab-PTX induces SQSTM1 phosphorylation at Ser403, which facilitates its incorporation into the selective autophagy of nanoparticles, known as nanoparticulophagy. Nab-PTX increased LC3-II protein expression, which triggered autophagosome formation. SQSTM1 enhanced Nab-PTX recognition to form autophagosomes, which were delivered to lysosomes for albumin degradation, thereby releasing PTX to induce mitotic catastrophe and apoptosis. Knockout of SQSTM1 downregulated Nab-PTX-induced mitotic catastrophe, apoptosis, and tumor inhibition in vitro and in vivo and inhibited Nab-PTX-induced caspase 3 activation via a p53-independent pathway. Ectopic expression of SQSTM1 by transfection of an SQSTM1-GFP vector restored the drug efficacy of Nab-PTX. Importantly, SQSTM1 is highly expressed in advanced lung and colorectal tumors and is associated with poor overall survival in clinical patients. Targeting SQSTM1 may provide an important strategy to improve nanodrug efficacy in clinical cancer therapy. This study demonstrates the enhanced efficacy of Nab-PTX for human lung and colorectal cancers via SQSTM1-mediated nanodrug delivery.

16.
Inflamm Regen ; 43(1): 13, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797799

RESUMO

BACKGROUND: CTLA4Ig is a dimeric fusion protein of the extracellular domain of cytotoxic T-lymphocyte protein 4 (CTLA4) and an Fc (Ig) fragment of human IgG1 that is approved for treating rheumatoid arthritis. However, CTLA4Ig may induce adverse effects. Developing a lesion-selective variant of CTLA4Ig may improve safety while maintaining the efficacy of the treatment. METHODS: We linked albumin to the N-terminus of CTLA4Ig (termed Alb-CTLA4Ig) via a substrate sequence of matrix metalloproteinase (MMP). The binding activities and the biological activities of Alb-CTLA4Ig before and after MMP digestion were analyzed by a cell-based ELISA and an in vitro Jurkat T cell activation assay. The efficacy and safety of Alb-CTLA4Ig in treating joint inflammation were tested in mouse collagen-induced arthritis. RESULTS: Alb-CTLA4Ig is stable and inactive under physiological conditions but can be fully activated by MMPs. The binding activity of nondigested Alb-CTLA4Ig was at least 10,000-fold weaker than that of MMP-digested Alb-CTLA4Ig. Nondigested Alb-CTLA4Ig was unable to inhibit Jurkat T cell activation, whereas MMP-digested Alb-CTLA4Ig was as potent as conventional CTLA4Ig in inhibiting the T cells. Alb-CTLA4Ig was converted to CTLA4Ig in the inflamed joints to treat mouse collagen-induced arthritis, showing similar efficacy to that of conventional CTLA4Ig. In contrast to conventional CTLA4Ig, Alb-CTLA4Ig did not inhibit the antimicrobial responses in the spleens of the treated mice. CONCLUSIONS: Our study indicates that Alb-CTLA4Ig can be activated by MMPs to suppress tissue inflammation in situ. Thus, Alb-CTLA4Ig is a safe and effective treatment for collagen-induced arthritis in mice.

17.
J Am Chem Soc ; 134(6): 3103-10, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22239495

RESUMO

ß-glucuronidase is an attractive reporter and prodrug-converting enzyme. The development of near-IR (NIR) probes for imaging of ß-glucuronidase activity would be ideal to allow estimation of reporter expression and for personalized glucuronide prodrug cancer therapy in preclinical studies. However, NIR glucuronide probes are not yet available. In this work, we developed two fluorescent probes for detection of ß-glucuronidase activity, one for the NIR range (containing IR-820 dye) and the other for the visible range [containing fluorescein isothiocyanate (FITC)], by utilizing a difluoromethylphenol-glucuronide moiety (TrapG) to trap the fluorochromes in the vicinity of the active enzyme. ß-glucuronidase-mediated hydrolysis of the glucuronyl bond of TrapG generates a highly reactive alkylating group that facilitates the attachment of the fluorochrome to nucleophilic moieties located near ß-glucuronidase-expressing sites. FITC-TrapG was selectively trapped on purified ß-glucuronidase or ß-glucuronidase-expressing CT26 cells (CT26/mßG) but not on bovine serum albumin or non-ß-glucuronidase-expressing CT26 cells used as controls. ß-glucuronidase-activated FITC-TrapG did not interfere with ß-glucuronidase activity and could label bystander proteins near ß-glucuronidase. Both FITC-TrapG and NIR-TrapG specifically imaged subcutaneous CT26/mßG tumors, but only NIR-TrapG could image CT26/mßG tumors transplanted deep in the liver. Thus NIR-TrapG may provide a valuable tool for visualizing ß-glucuronidase activity in vivo.


Assuntos
Glucuronidase/biossíntese , Glucuronidase/química , Glucuronídeos/química , Animais , Bovinos , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Corantes Fluorescentes/química , Humanos , Fígado/patologia , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Neoplasias/patologia , Pró-Fármacos/química , Soroalbumina Bovina/metabolismo , Espectrofotometria Infravermelho/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
18.
Anal Biochem ; 431(1): 1-3, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22885722

RESUMO

We designed a protein ladder (hereafter referred to as "Mega-tag") that contains 14 of the most commonly used epitope tags fused to molecular weight markers. The Mega-tag ladder can be simultaneously visualized when anti-tag antibodies are used to detect epitope-tagged recombinant proteins in Western blots. The logarithm of molecular weights and relative mobility of the Mega-tag protein ladder are highly correlated (R(2)=0.997±0.00232), indicating that the dye-free Mega-tag protein ladder is accurate. It can also serve as a positive control for anti-epitope tag immunoblots. The Mega-tag protein ladder should provide a convenient and precise tool for Western blot analysis.


Assuntos
Western Blotting , Proteínas Recombinantes de Fusão/química , Anticorpos/imunologia , Eletroforese em Gel de Poliacrilamida , Epitopos/genética , Epitopos/imunologia , Epitopos/metabolismo , Peso Molecular , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo
19.
Inorg Chem ; 51(22): 12426-35, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23116118

RESUMO

ß-Glucuronidase is a key lysosomal enzyme and is often overexpressed in necrotic tumor masses. We report here the synthesis of a pro receptor-induced magnetization enhancement (pro-RIME) magnetic resonance imaging (MRI) contrast agent ([Gd(DOTA-FPßGu)]) for molecular imaging of ß-glucuronidase activity in tumor tissues. The contrast agent consists of two parts, a gadolinium complex and a ß-glucuronidase substrate (ß-d-glucopyranuronic acid). The binding association constant (KA) of [Gd(DOTA-FPßGu)] is 7.42 × 10(2), which is significantly lower than that of a commercially available MS-325 (KA = 3.0 × 10(4)) RIME contrast agent. The low KA value of [Gd(DOTA-FPßGu)] is due to the pendant ß-d-glucopyranuronic acid moiety. Therefore, [Gd(DOTA-FPßGu)] can be used for detection of ß-glucuronidase through RIME modulation. The detail mechanism of enzymatic activation of [Gd(DOTA-FPßGu)] was elucidated by LC-MS. The kinetics of ß-glucuronidase catalyzed hydrolysis of [Eu(DOTA-FPßGu)] at pH 7.4 best fit the Miechalis-Menten kinetic mode with Km = 1.38 mM, kcat = 3.76 × 10(3), and kcat/Km = 2.72 × 10(3) M(-1) s(-1). The low Km value indicates high affinity of ß-glucuronidase for [Gd(DOTA-FPßGu)] at physiological pH. Relaxometric studies revealed that T1 relaxivity of [Gd(DOTA-FPßGu)] changes in response to the concentration of ß-glucuronidase. Consistent with the relaxometric studies, [Gd(DOTA-FPßGu)] showed significant change in MR image signal in the presence of ß-glucuronidase and HSA. In vitro and in vivo MR images demonstrated appreciable differences in signal enhancement in the cell lines and tumor xenografts in accordance to their expression levels of ß-glucuronidase.


Assuntos
Antineoplásicos/farmacologia , Meios de Contraste/farmacologia , Gadolínio , Glucuronidase/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Compostos Organometálicos/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/síntese química , Meios de Contraste/química , Relação Dose-Resposta a Droga , Ativação Enzimática , Gadolínio/química , Ligantes , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/enzimologia , Neoplasias Experimentais/patologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Immunol ; 13: 1080897, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618412

RESUMO

Background: Drug repurposing is a fast and effective way to develop drugs for an emerging disease such as COVID-19. The main challenges of effective drug repurposing are the discoveries of the right therapeutic targets and the right drugs for combating the disease. Methods: Here, we present a systematic repurposing approach, combining Homopharma and hierarchal systems biology networks (HiSBiN), to predict 327 therapeutic targets and 21,233 drug-target interactions of 1,592 FDA drugs for COVID-19. Among these multi-target drugs, eight candidates (along with pimozide and valsartan) were tested and methotrexate was identified to affect 14 therapeutic targets suppressing SARS-CoV-2 entry, viral replication, and COVID-19 pathologies. Through the use of in vitro (EC50 = 0.4 µM) and in vivo models, we show that methotrexate is able to inhibit COVID-19 via multiple mechanisms. Results: Our in vitro studies illustrate that methotrexate can suppress SARS-CoV-2 entry and replication by targeting furin and DHFR of the host, respectively. Additionally, methotrexate inhibits all four SARS-CoV-2 variants of concern. In a Syrian hamster model for COVID-19, methotrexate reduced virus replication, inflammation in the infected lungs. By analysis of transcriptomic analysis of collected samples from hamster lung, we uncovered that neutrophil infiltration and the pathways of innate immune response, adaptive immune response and thrombosis are modulated in the treated animals. Conclusions: We demonstrate that this systematic repurposing approach is potentially useful to identify pharmaceutical targets, multi-target drugs and regulated pathways for a complex disease. Our findings indicate that methotrexate is established as a promising drug against SARS-CoV-2 variants and can be used to treat lung damage and inflammation in COVID-19, warranting future evaluation in clinical trials.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Metotrexato/farmacologia , Metotrexato/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação/tratamento farmacológico , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA