RESUMO
Antigen presentation by the human leukocyte antigen (HLA) on the cell surface is critical for the transduction of the immune signal toward cytotoxic T lymphocytes. DNA damage upregulates HLA class I presentation; however, the mechanism is unclear. Here, we show that DNA-damage-induced HLA (di-HLA) presentation requires an immunoproteasome, PSMB8/9/10, and antigen-transporter, TAP1/2, demonstrating that antigen production is essential. Furthermore, we show that di-HLA presentation requires ATR, AKT, mTORC1, and p70-S6K signaling. Notably, the depletion of CBP20, a factor initiating the pioneer round of translation (PRT) that precedes nonsense-mediated mRNA decay (NMD), abolishes di-HLA presentation, suggesting that di-antigen production requires PRT. RNA-seq analysis demonstrates that DNA damage reduces NMD transcripts in an ATR-dependent manner, consistent with the requirement for ATR in the initiation of PRT/NMD. Finally, bioinformatics analysis identifies that PRT-derived 9-mer peptides bind to HLA and are potentially immunogenic. Therefore, DNA damage signaling produces immunogenic antigens by utilizing the machinery of PRT/NMD.
Assuntos
Degradação do RNAm Mediada por Códon sem Sentido , Biossíntese de Proteínas , Apresentação de Antígeno , Dano ao DNA , Antígenos de Histocompatibilidade Classe I/genética , HumanosRESUMO
To obtain quantitative volumetric data for the Golgi apparatus after ionizing radiation (IR) using super-resolution three-dimensional structured illumination (3D-SIM) microscopy. Normal human retinal pigment epithelial (RPE) cells were irradiated with X-rays (10 Gy), followed by immunofluorescence staining of the Golgi marker RCAS1. 3D-SIM imaging was performed using DeltaVision OMX version 4 and SoftWoRx 6.1. Polygon rendering and spot signal identification were performed using Imaris 8.1.2. Differences between groups were assessed by Welch's t test. RCAS1 signals in untreated cells were located adjacent to nuclei and showed a reticular morphology. Upon IR, the area of RCAS1 signals expanded while retaining the reticular morphology. Polygon rendering imaging revealed that the volume of RCAS1 at 48 h post-IR was greater than that for unirradiated cells (93.7 ± 19.0 µm3 vs. 33.0 ± 4.2 µm3, respectively; P < 0.001): a 2.8-fold increase. Spot signal imaging showed that the number of RCAS1 spot signals post-IR was greater than that for unirradiated cells [3.4 ± 0.8 (× 103) versus 1.3 ± 0.2 (× 103), respectively; P < 0.001]: a 2.7-fold increase. This is the first study to report quantitative volumetric data of the Golgi apparatus in response to IR using super-resolution 3D-SIM microscopy.
Assuntos
Células Epiteliais/ultraestrutura , Complexo de Golgi/ultraestrutura , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Raios X , Técnicas de Cultura de Células , Células Epiteliais/efeitos da radiação , Humanos , RetinaRESUMO
In the stress response, activation of the hypothalamic-pituitary-adrenal axis, and particularly the release of glucocorticoids, plays a critical role. However, dysregulation of this system and sustained high plasma levels of glucocorticoids can result in depression. Recent studies have suggested the involvement of reactive oxygen species (ROS), such as superoxide anion, in depression. However, direct evidence for a role of ROS in the pathogenesis of this disorder is lacking. In this study, using transgenic mice expressing human Cu/Zn-superoxide dismutase (SOD1), an enzyme that catalyzes the dismutation of superoxide anions, we examined the effect of SOD1 overexpression on depressive-like behavioral phenotypes in mice. Depressive-like behaviors were induced by daily subcutaneous administration of the glucocorticoid corticosterone for 4 weeks, and was monitored with the social interaction test, the sucrose preference test and the forced swim test. These tests revealed that transgenic mice overexpressing SOD1 are more resistant to glucocorticoid-induced depressive-like behavioral disorders than wild-type animals. Furthermore, compared with wild-type mice, transgenic mice showed a reduction in the number of 8-hydroxy-2'-deoxyguanosine (a marker of oxidative stress)-positive cells in the hippocampal CA3 region following corticosterone administration. These results suggest that overexpression of SOD1 protects mice against glucocorticoid-induced depressive-like behaviors by decreasing cellular ROS levels.
Assuntos
Transtorno Depressivo/metabolismo , Transtorno Depressivo/prevenção & controle , Transtornos Mentais/metabolismo , Transtornos Mentais/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Animais , Comportamento Animal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno Depressivo/induzido quimicamente , Glucocorticoides , Masculino , Transtornos Mentais/induzido quimicamente , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Regulação para CimaRESUMO
BACKGROUND AND PURPOSE: Ionizing radiation (IR) induces DNA double-strand breaks (DSBs), leading to micronuclei formation, which has emerged as a key mediator of inflammatory responses after IR. This study aimed to investigate the signaling cascade in inflammatory gene expression using fibroblasts harboring DNA damage response deficiency after exposure to IR. MATERIALS AND METHODS: Micronuclei formation was examined in human dermal fibroblasts derived from patients with deficiencies in ATM, ATR, MRE11, XLF, Artemis, or BRCA2 after IR. RNA-sequencing analysis was performed to assess gene expression, pathway mapping, and the balance of transcriptional activity using the transcription factor-based downstream gene expression mapping (TDEM) method developed in this study. RESULTS: Deficiencies in ATM, ATR, or MRE11 led to increased micronuclei formation after IR compared to normal cells. RNA-seq analysis revealed significant upregulation of inflammatory expression in cells deficient in ATM, ATR, or MRE11 following IR. Pathway mapping analysis identified the upregulation of RIG-I, MDA-5, IRF7, IL6, and interferon stimulated gene expression after IR. These changes were pronounced in cells deficient in ATM, ATR, or MRE11. TDEM analysis suggested the differential activation of STAT1/3-pathway between ATM and ATR deficiency. CONCLUSION: Enhanced micronuclei formation upon ATM, ATR, or MRE11 deficiency activated the cGAS/STING, RIG-I-MDA-5-IRF7-IL6 pathway, resulting in its downstream interferon stimulated gene expression following exposure to IR. Our study provides comprehensive information regarding the status of inflammation-related gene expression under DSB repair deficiency after IR. The generated dataset may be useful in developing functional biomarkers to accurately identify patients sensitive to radiotherapy.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Fibroblastos , Radiação Ionizante , Transdução de Sinais , Humanos , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/deficiência , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Homóloga a MRE11/genética , Inflamação/etiologia , Quebras de DNA de Cadeia DuplaRESUMO
Ionizing radiation (IR)-induced double-strand breaks (DSBs) are primarily repaired by non-homologous end joining or homologous recombination (HR) in human cells. DSB repair requires adenosine-5'-triphosphate (ATP) for protein kinase activities in the multiple steps of DSB repair, such as DNA ligation, chromatin remodeling, and DNA damage signaling via protein kinase and ATPase activities. To investigate whether low ATP culture conditions affect the recruitment of repair proteins at DSB sites, IR-induced foci were examined in the presence of ATP synthesis inhibitors. We found that p53 binding protein 1 foci formation was modestly reduced under low ATP conditions after IR, although phosphorylated histone H2AX and mediator of DNA damage checkpoint 1 foci formation were not impaired. Next, we examined the foci formation of breast cancer susceptibility gene I (BRCA1), replication protein A (RPA) and radiation 51 (RAD51), which are HR factors, in G2 phase cells following IR. Interestingly, BRCA1 and RPA foci in the G2 phase were significantly reduced under low ATP conditions compared to that under normal culture conditions. Notably, RAD51 foci were drastically impaired under low ATP conditions. These results suggest that HR does not effectively progress under low ATP conditions; in particular, ATP shortages impair downstream steps in HR, such as RAD51 loading. Taken together, these results suggest that the maintenance of cellular ATP levels is critical for DNA damage response and HR progression after IR.
Assuntos
Trifosfato de Adenosina , Proteína BRCA1 , Recombinação Homóloga , Rad51 Recombinase , Radiação Ionizante , Humanos , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/biossíntese , Recombinação Homóloga/efeitos da radiação , Rad51 Recombinase/metabolismo , Proteína BRCA1/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteína de Replicação A/metabolismo , Linhagem Celular Tumoral , Espaço Intracelular/metabolismo , Espaço Intracelular/efeitos da radiação , Reparo do DNA , Histonas/metabolismoRESUMO
Purpose: Recent radiation therapy (RT), such as intensity modulated radiation therapy and particle RT, has improved the concentration of the radiation field targeting tumors. However, severe adverse effects still occur, possibly due to genetic factors in patients. We aimed to investigate the mechanism of exacerbated inflammation during RT. Methods and Materials: Dermal fibroblasts derived from a patient with severe inflammatory adverse effects during RT were compared with 2 normal human dermal fibroblasts. Micronuclei formation, G2/M-checkpoint arrest, DNA damage signaling and repair, and inflammatory gene expression were comprehensively examined. Results: We found greater micronuclei formation in radiation-sensitive fibroblasts (RS-Fs) after ionizing radiation (IR). RS-Fs exhibited premature G2/M-checkpoint release after IR, which triggers micronuclei formation because RS-Fs undergo mitosis with unrepaired DNA double-strand breaks (DSBs). Additionally, we found that DSB end-resection and activation of the ATR-Chk1 pathway were impaired in RS-Fs after IR. Consistent with the increase in the formation of micronuclei, which can deliver cytosolic nucleic acids resulting in an innate immune response, the expression of genes associated with inflammatory responses was highly upregulated in RS-Fs after IR. Conclusions: Although this is a single case of RT-dependent adverse effect, our findings suggest that impaired G2/M-checkpoint arrest due to the lack of DSB end-resection and activation of the ATR-Chk1 pathway causes exacerbated inflammation during RT; therefore, genes involved in G2/M-checkpoint arrest may be a predictive marker for unexpected inflammatory responses in RT.
RESUMO
Although previous studies have reported that pre-mRNA splicing factors (SFs) are involved in the repair of DNA double-strand breaks (DSBs) via homologous recombination (HR), their exact role in promoting HR remains poorly understood. Here, we showed that SART1, an SF upregulated in several types of cancer, promotes DSB end resection, an essential first step of HR. The resection-promoting function of SART1 requires phosphorylation at threonine 430 and 695 by ATM/ATR. SART1 is recruited to DSB sites in a manner dependent on transcription and its RS domain. SART1 is epistatic with BRCA1, a major HR factor, in the promotion of resection, especially transcription-associated resection in the G2 phase. SART1 and BRCA1 accumulate at DSB sites in an interdependent manner, and epistatically counteract the resection blockade posed by 53BP1 and RIF1. Furthermore, chromosome analysis demonstrated that SART1 and BRCA1 epistatically suppressed genomic alterations caused by DSB misrepair in the G2 phase. Collectively, these results indicate that SART1 and BRCA1 cooperatively facilitate resection of DSBs arising in transcriptionally active genomic regions in the G2 phase, thereby promoting faithful repair by HR, and suppressing genome instability.
Assuntos
Proteína BRCA1 , Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Humanos , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Fosforilação , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Linhagem Celular Tumoral , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Epistasia Genética , Fase G2/genéticaRESUMO
Immune checkpoint inhibitors (ICI) are cancer therapies that restore anti-tumor immunity; however, only a small percentage of patients have been completely cured by ICI alone. Multiple approaches in combination with other modalities have been used to improve the efficacy of ICI therapy. Among conventional cancer treatments, radiotherapy or DNA damage-based chemotherapy is a promising candidate as a partner of ICI because DNA damage signaling potentially stimulates immune activities turning the tumor's immune environment into hot tumors. Programmed death-ligand 1 (PD-L1) and human leukocyte antigen class I (HLA-I), which are immune ligands, regulate the balance of anti-tumor immunity in the tumor microenvironment. PD-L1 functions as a brake to suppress cytotoxic T cell activity, whereas HLA-I is an immune accelerator that promotes the downstream of the T cell signaling. Accumulating evidence has demonstrated that DNA damage enhances the presentation of HLA-I on the surface of damaged cells. However, it is unclear how signal transduction in DNA-damaged cells upregulates the presentation of HLA-I with antigens. Our recent study uncovered the mechanism underlying DNA damage-induced HLA-I presentation, which requires polypeptide synthesis through a pioneer round of translation. In this review, we summarize the latest overview of how DNA damage stimulates antigen production presented by HLA-I.
Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA , Linfócitos T/metabolismo , Microambiente TumoralRESUMO
Purpose: Understanding the immune response during radiation therapy (RT) in a clinical setting is imperative for maximizing the efficacy of combined RT and immunotherapy. Calreticulin, a major damage-associated molecular pattern that is exposed on the cell surface after RT, is presumed to be associated with the tumor-specific immune response. Here, we examined changes in calreticulin expression in clinical specimens obtained before and during RT and analyzed its relationship with the density of CD8+ T cells in the same patient set. Methods and Materials: This retrospective analysis evaluated 67 patients with cervical squamous cell carcinoma who were treated with definitive RT. Tumor biopsy specimens were collected before RT and after 10 Gy irradiation. Calreticulin expression in tumor cells was evaluated via immunohistochemical staining. Subsequently, the patients were divided into 2 groups according to the level of calreticulin expression, and the clinical outcomes were compared. Finally, the correlation between calreticulin levels and density of stromal CD8+ T cells was evaluated. Results: The calreticulin expression significantly increased after 10 Gy (82% of patients showed an increase; P < .01). Patients with increased calreticulin levels tended to show better progression-free survival, but this was not statistically significant (P = .09). In patients with high expression of calreticulin, a positive trend was observed between calreticulin and CD8+ T cell density, but the association was not statistically significant (P = .06). Conclusions: Calreticulin expression increased after 10 Gy irradiation in tissue biopsies of patients with cervical cancer. Higher calreticulin expression levels are potentially associated with better progression-free survival and greater T cell positivity, but there was no statistically significant relationship between calreticulin upregulation and clinical outcomes or CD8+ T cell density. Further analysis will be required to clarify mechanisms underlying the immune response to RT and to optimize the RT and immunotherapy combination approach.
RESUMO
Single-stranded DNA (ssDNA) arising as an intermediate of cellular processes on DNA is a potential vulnerability of the genome unless it is appropriately protected. Recent evidence suggests that R-loops, consisting of ssDNA and DNA-RNA hybrids, can form in the proximity of DNA double-strand breaks (DSBs) within transcriptionally active regions. However, how the vulnerability of ssDNA in R-loops is overcome during DSB repair remains unclear. Here, we identify RAP80 as a factor suppressing the vulnerability of ssDNA in R-loops, chromosome translocations, and deletions during DSB repair. Mechanistically, RAP80 prevents unscheduled nucleolytic processing of ssDNA in R-loops by CtIP. This mechanism promotes efficient DSB repair via transcription-associated end joining dependent on BRCA1, Polθ, and LIG1/3. Thus, RAP80 suppresses the vulnerability of R-loops during DSB repair, thereby precluding genomic abnormalities in a critical component of the genome caused by deleterious R-loop processing.
Assuntos
Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Chaperonas de Histonas/metabolismo , Estruturas R-Loop/fisiologia , DNA/genética , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades/fisiologia , DNA de Cadeia Simples/metabolismo , Humanos , RNA/genéticaRESUMO
The growing importance of antitumour immunity by cancer immunotherapy has prompted studies on radiotherapy-induced immune response. Previous studies have indicated that programmed cell death-1 ligand (PD-L1) expression is regulated by DNA damage signalling. However, PD-L1 up-regulation after radiotherapy has not been fully investigated at the clinical level, particularly in the context of expression of DNA repair factors. The present study examined the correlation of mRNA expression between PD-L1 and non-homologous end joining (NHEJ) factors using The Cancer Genome Atlas database analysis. Among NHEJ factors, Ku80 mRNA expression was negatively correlated with PD-L1 mRNA expression levels in several types of cancer (colon adenocarcinoma, breast invasive carcinoma, skin cutaneous melanoma, lung adenocarcinoma, head and neck squamous cell carcinoma, uterine corpus endometrial carcinoma, cervical squamous cell carcinoma and endocervical adenocarcinoma). To verify the negative correlation in clinical samples, the present study analysed whether Ku80 expression levels affected PD-L1 up-regulation after radiotherapy using cervical squamous cell carcinoma samples. Quantitative evaluation using software analysis of immunohistochemically stained slides revealed that patients with low Ku80 positivity in biopsy specimens demonstrated increased PD-L1 expression levels after 10 Gy irradiation (Spearman's rank correlation coefficient=-0.274; P=0.017). Furthermore, PD-L1 induction levels in tumour cells after 10 Gy of irradiation were significantly inversely correlated with Ku80 expression levels (Spearman's rank correlation coefficient=-0.379; P<0.001). The present study also confirmed that short interfering RNA-mediated Ku80 depletion was associated with greater X-ray-induced PD-L1 up-regulation in HeLa cells. These results indicated that radiotherapy could enhance PD-L1 induction in tumour cells with low Ku80 expression in a clinical setting. Furthermore, these data highlighted Ku80 as a potential predictive biomarker for immune checkpoint therapy combined with radiotherapy.
RESUMO
An accumulation of evidence indicates the importance of DNA damage signaling in modulating immune responses. Indeed, understanding the mechanism that underlies signal transduction originating from DNA damage is vital to overcoming refractory cancer, particularly when cancer immune therapy is applied in combination with DNA damage-dependent radio/chemotherapy. In addition, immune-associated responses to such signals can aggravate the symptoms of infections, allergies, autoimmune disease, and aging. In this review, we discuss how cells transduce signals, triggered by DNA damage, from their origins to neighboring cells and how this affects immune and inflammatory responses.
Assuntos
Reparo do DNA , Imunidade , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Transdução de Sinais , Animais , Dano ao DNA , DNA de Neoplasias/metabolismo , Humanos , Inflamação , Neoplasias/metabolismo , Neoplasias/radioterapiaRESUMO
The oncogenic fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), found in anaplastic large-cell lymphoma (ALCL), localizes to the cytosol, nucleoplasm, and nucleolus. However, the relationship between its localization and transforming activity remains unclear. We herein demonstrated that NPM-ALK localized to the nucleolus by binding to nucleophosmin 1 (NPM1), a nucleolar protein that exhibits shuttling activity between the nucleolus and cytoplasm, in a manner that was dependent on its kinase activity. In the nucleolus, NPM-ALK interacted with Epstein-Barr virus nuclear antigen 1-binding protein 2 (EBP2), which is involved in rRNA biosynthesis. Moreover, enforced expression of NPM-ALK induced tyrosine phosphorylation of EBP2. Knockdown of EBP2 promoted the activation of the tumor suppressor p53, leading to G0 /G1 -phase cell cycle arrest in Ba/F3 cells transformed by NPM-ALK and ALCL patient-derived Ki-JK cells, but not ALCL patient-derived SUDH-L1 cells harboring p53 gene mutation. In Ba/F3 cells transformed by NPM-ALK and Ki-JK cells, p53 activation induced by knockdown of EBP2 was significantly inhibited by Akt inhibitor GDC-0068, mTORC1 inhibitor rapamycin, and knockdown of Raptor, an essential component of mTORC1. These results suggest that the knockdown of EBP2 triggered p53 activation through the Akt-mTORC1 pathway in NPM-ALK-positive cells. Collectively, the present results revealed the critical repressive mechanism of p53 activity by EBP2 and provide a novel therapeutic strategy for the treatment of ALCL.
Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Nucléolo Celular/metabolismo , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , RNA Helicases DEAD-box/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Modelos Biológicos , Proteínas Nucleares/metabolismo , Nucleofosmina , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Ribossômico 28S/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologiaRESUMO
Programmed death ligand 1 (PD-L1) expression on the surface of cancer cells affects the efficacy of anti-PD-1/PD-L1 immune checkpoint therapy. However, the mechanism underlying PD-L1 expression in cancer cells is not fully understood, particularly after ionizing radiation (IR). Here, we examined the impact of high linear energy transfer (LET) carbon-ion irradiation on the expression of PD-L1 in human osteosarcoma U2OS cells. We found that the upregulation of PD-L1 expression after high LET carbon-ion irradiation was greater than that induced by X-rays at the same physical and relative biological effectiveness (RBE) dose, and that the upregulation of PD-L1 induced by high LET carbon-ion irradiation was predominantly dependent on ataxia telangiectasia and Rad3-related (ATR) kinase activity. Moreover, we showed that the downstream signaling, e.g. STAT1 phosphorylation and IRF1 expression, was upregulated to a greater extent after high LET carbon-ion irradiation than X-rays, and that IRF1 upregulation was also ATR dependent. Finally, to visualize PD-L1 molecules on the cell surface in 3D, we applied immunofluorescence-based super-resolution imaging. The three-dimensional structured illumination microscopy (3D-SIM) analyses revealed substantial increases in the number of presented PD-L1 molecules on the cell surface after high LET carbon-ion irradiation compared with X-ray irradiation.
Assuntos
Antígeno B7-H1/biossíntese , Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Radioterapia com Íons Pesados , Proteínas de Neoplasias/biossíntese , Osteossarcoma/patologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/fisiologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Humanos , Imageamento Tridimensional , Fator Regulador 1 de Interferon/biossíntese , Fator Regulador 1 de Interferon/genética , Transferência Linear de Energia , Morfolinas/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fosforilação/efeitos da radiação , Processamento de Proteína Pós-Traducional/efeitos da radiação , Pirazinas/farmacologia , Pironas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Neoplásico/biossíntese , RNA Neoplásico/genética , Fator de Transcrição STAT1/metabolismo , Sulfonas/farmacologia , Regulação para Cima/efeitos da radiação , Raios XRESUMO
Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) are caused by a fusion protein, BCR-ABL, which induces cellular transformation by activating the signaling molecules, STAT5 and Akt. The specific BCR-ABL inhibitors including imatinib, nilotinib, and dasatinib, are clinically utilized in the treatment with CML and ALL patients. Although these BCR-ABL inhibitors are initially successful in the treatment of leukemia, many patients develop drug resistance due to the appearance of the gatekeeper mutation of BCR-ABL, T315I. Recently, we found that taxodione, a quinone methide diterpene isolated from a conifer, Taxodium distichum, significantly induced apoptosis in human myelogenous leukemia-derived K562 cells, which is positive for the bcr-abl gene. Taxodione reduced the activities of mitochondrial respiratory chain complex III, leading to the production of reactive oxygen species (ROS). An antioxidant agent, N-acetylcysteine (NAC), canceled taxodione-induced ROS production and apoptotic cell death, suggesting that taxodione induced apoptosis through ROS accumulation. Furthermore, in K562 cells treated with taxodione, BCR-ABL, STAT5 and Akt were sequestered in mitochondrial fraction, and their localization changes decrease their abilities to stimulate cell proliferation. Strikingly, NAC canceled these taxodione-caused inhibition of BCR-ABL, STAT5 and Akt. In addition, taxodione significantly induced apoptosis in transformed Ba/F3 cells by not only BCR-ABL but also T315I-mutated BCR-ABL through the generation of ROS, suggesting that taxodione has potential as anti-tumor drug with high efficacy to overcome BCR-ABL T315I mutation-mediated resistance in leukemia cells. It's also expected that these knowledge becomes an important clue in the development of anti-cancer drugs against the broad range of tumors.
Assuntos
Apoptose , Linhagem Celular Tumoral , Diterpenos , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl , Humanos , Leucemia Mielogênica Crônica BCR-ABL PositivaRESUMO
Anaplastic large cell lymphoma (ALCL) is associated with a characteristic chromosomal translocation that generates the oncogenic fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). Methotrexate is a commonly used chemotherapeutic drug in the treatment of multiple cancers due to its inhibition of dihydrofolate reductase (DHFR), which suppresses the synthesis of DNA. In the present study, we found that low-dose methotrexate significantly induced apoptosis in transformed Ba/F3 cells expressing NPM-ALK by inhibiting the activation of signal transducer and activator of transcription factor 3 (STAT3), a critical downstream molecule of NPM-ALK. Although methotrexate prevented the phosphorylation of STAT3, it did not affect the activity of NPM-ALK. A co-treatment with folinic acid prevented the methotrexate-induced inhibition of STAT3 activation and induction of apoptosis, suggesting that methotrexate exerts its cytotoxic effects by depleting tetrahydrofolate (THF) in transformed cells by NPM-ALK. Furthermore, methotrexate induced the down-regulation of the anti-apoptotic protein, MCL-1, DNA damage, and the activation of a p53 tumor suppressor, leading to apoptosis through the inhibition of STAT3. Methotrexate significantly induced apoptosis in ALK inhibitor-resistant cells expressing the NPM-ALK mutant harboring the point mutation, G262R, and in ALCL patient-derived NPM-ALK-positive Ki-JK cells. Collectively, these results demonstrate the potential therapeutic application of methotrexate, which inhibits the activation of STAT3, to NPM-ALK-positive ALCL.
Assuntos
Quinase do Linfoma Anaplásico/metabolismo , Apoptose/efeitos dos fármacos , Linfoma Anaplásico de Células Grandes/metabolismo , Metotrexato/toxicidade , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Animais , Antimetabólitos Antineoplásicos/toxicidade , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Humanos , CamundongosRESUMO
BACKGROUND: Inhibitors for signal transducer and activator of transcription 3 (STAT3), Stattic, BP-1-102, and LLL12 significantly induce apoptosis in transformed Ba/F3 cells expressing an oncogenic fusion protein, nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) that induces the activation of STAT3. We found that the antioxidant reagent, N-acetyl cysteine (NAC) prevented the abilities of Stattic and BP-1-102, but not LLL12 to induce apoptosis in transformed cells expressing NPM-ALK, providing a novel problem in use of STAT3 inhibitors. We herein investigated the mechanisms how NAC prevented the effects of Sttatic and BP-1-102. METHODS: Ba/F3 cells expressing NPM-ALK and SUDHL-1 cells were treated with antioxidants such as NAC, Trolox or edaravone in combination with STAT3 inhibitors. Phosphorylation of STAT3, cell proliferation rate, cell viability, cell cycle, internucleosomal DNA fragmentation and the intracellular accumulation of reactive oxygen species (ROS) was investigated. The binding of STAT3 inhibitors and NAC was analyzed by LC-MS. RESULTS: NAC but not Trolox and edaravone diminished the abilities of Stattic and BP-1-102 to induce apoptosis in cells expressing NPM-ALK. The ROS levels in cells expressing NPM-ALK were not markedly affected by the treatments with Stattic and BP-1-102 in combination with NAC, suggesting that NAC inhibited the activity of Stattic and BP-1-102 independent of its antioxidant activity. LC-MS analysis revealed that NAC directly bound to Stattic and BP-1-102. Furthermore, these NAC adducts exhibited no cytotoxicity, and failed to affect the activity of STAT3. CONCLUSIONS: NAC antagonizes the activities of Stattic and BP-1-102, which inhibit STAT3 activation by interacting with cysteine residues in STAT3.
Assuntos
Acetilcisteína/farmacologia , Ácidos Aminossalicílicos/farmacologia , Óxidos S-Cíclicos/farmacologia , Fator de Transcrição STAT3/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismo , Sulfonamidas/farmacologia , Ácidos Aminossalicílicos/química , Antraquinonas/química , Antraquinonas/farmacologia , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Óxidos S-Cíclicos/química , Humanos , Fosforilação/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sulfonamidas/químicaRESUMO
Crizotinib is an inhibitor of anaplastic lymphoma kinase (ALK) and is of significant therapeutic benefit to patients with non-small cell lung cancer (NSCLC) harboring the EML4-ALK fusion gene. In the present study, we demonstrated that α-tocopherol, a major component of vitamin E, attenuated the effects of crizotinib independently of its anti-oxidant properties. α-Tocopherol significantly inhibited crizotinib-induced apoptosis in cells transformed by EML4-ALK. It also effectively attenuated the crizotinib-induced inhibition of EML4-ALK and its downstream molecules, STAT3 and ERK, and suppressed the inhibitory effects of crizotinib on EML4-ALK-mediated transformation in the focus formation assay. On the other hand, other members of the vitamin E family, namely, ß-tocopherol, γ-tocopherol, δ-tocopherol, and α-tocotrienol, and a water-soluble analog of vitamin E, Trolox had no effects on the anti-tumor activity of crizotinib in cells transformed by EML4-ALK. Collectively, these results revealed the risk of the anti-tumor activity of crizotinib being attenuated when it is administrated in combination with vitamin E supplements containing α-tocopherol as a major component.
Assuntos
Antineoplásicos/farmacologia , Proteínas de Fusão Oncogênica/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Vitamina E/farmacologia , alfa-Tocoferol/farmacologia , Quinase do Linfoma Anaplásico , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Crizotinibe , Células HEK293 , Humanos , Camundongos , Células NIH 3T3 , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Fator de Transcrição STAT3/metabolismoRESUMO
Chronic myeloid leukemia (CML) and acute lymphoblastic leukemia (ALL) are hematopoietic malignancies caused by the constitutive activation of BCR-ABL tyrosine kinase. Although direct BCR-ABL inhibitors, such as imatinib, were initially successful in the treatment of leukemia, many patients developed drug resistance over time due to the gatekeeper mutation of BCR-ABL T315I. In the present study, we found that taxodione, a quinone methide diterpene isolated from Taxodium distichum, significantly induced apoptosis in human myelogenous leukemia-derived K562 cells, which were transformed by BCR-ABL. Taxodione reduced the activities of mitochondrial respiratory chain (MRC) complexes III and V, which appeared to induce the production of reactive oxygen species (ROS). N-acetylcysteine (NAC), an antioxidant agent, canceled taxodione-induced ROS production, reductions in MRC activities, particularly complex V, and apoptotic cell death. Furthermore, in K562 cells treated with taxodione, BCR-ABL and its major signaling molecules, such as STAT5 and Akt were sequestered in mitochondrial fraction, and their localization changes decrease their abilities to stimulate cell proliferation, suggesting that these actions seem to be a mechanism how taxodione functions as an anti-tumor drug. Strikingly, NAC canceled these taxodione-caused anti-cancer effects. Taxodione induced apoptosis in transformed Ba/F3 cells induced not only by BCR-ABL, but also T315I-mutated BCR-ABL through the generation of ROS. Collectively, the present results suggest that in the treatment of leukemia, taxodione has potential as a compound with high efficacy to overcome BCR-ABL T315I mutation-mediated resistance in leukemia cells.
Assuntos
Apoptose/efeitos dos fármacos , Diterpenos/farmacologia , Proteínas de Fusão bcr-abl/metabolismo , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Taxodium , Apoptose/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Diterpenos/isolamento & purificação , Relação Dose-Resposta a Droga , Humanos , Células K562 , Extratos Vegetais/isolamento & purificaçãoRESUMO
Anaplastic large cell lymphomas (ALCL) are mainly characterized by harboring the fusion protein nucleophosmin-anaplastic lymphoma kinase (NPM-ALK). The ALK inhibitor, crizotinib specifically induced apoptosis in Ba/F3 cells expressing NPM-ALK by inhibiting the activation of NPM-ALK and its downstream molecule, signal transducer and activator of transcription factor 3 (STAT3). We found that α-tocopherol, a major component of vitamin E, attenuated the effects of crizotinib independently of its anti-oxidant properties. Although α-tocopherol suppressed the inhibitory effects of crizotinib on the signaling axis including NPM-ALK and STAT3, it had no influence on the intake of crizotinib into cells. Crizotinib also directly inhibited the kinase activity of NPM-ALK; however, this inhibitory effect was not altered by the co-treatment with α-tocopherol. Whereas the nuclear localization of NPM-ALK was disappeared by the treatment with crizotinib, the co-treatment with α-tocopherol swept the effect of crizotinib and caused the localization of NPM-ALK in nucleus. The administration of α-tocopherol attenuated the anti-tumor activity of crizotinib against NPM-ALK-provoked tumorigenesis in vivo. Furthermore, the α-tocopherol-induced inhibition of crizotinib-caused apoptosis was also observed in NPM-ALK-positive cells derived from ALCL patients, namely, SUDHL-1 and Ki-JK. Collectively, these results not only revealed the novel mechanism underlying crizotinib-induced apoptosis in NPM-ALK-positive cells, but also suggest that the anti-tumor effects of crizotinib are attenuated when it is taken in combination with vitamin E.