Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 32(1): 15-41, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31649123

RESUMO

Since 1999, various forward- and reverse-genetic approaches have uncovered nearly 200 genes required for symbiotic nitrogen fixation (SNF) in legumes. These discoveries advanced our understanding of the evolution of SNF in plants and its relationship to other beneficial endosymbioses, signaling between plants and microbes, the control of microbial infection of plant cells, the control of plant cell division leading to nodule development, autoregulation of nodulation, intracellular accommodation of bacteria, nodule oxygen homeostasis, the control of bacteroid differentiation, metabolism and transport supporting symbiosis, and the control of nodule senescence. This review catalogs and contextualizes all of the plant genes currently known to be required for SNF in two model legume species, Medicago truncatula and Lotus japonicus, and two crop species, Glycine max (soybean) and Phaseolus vulgaris (common bean). We also briefly consider the future of SNF genetics in the era of pan-genomics and genome editing.


Assuntos
Fabaceae/genética , Genes de Plantas/genética , Estudos de Associação Genética/história , Fixação de Nitrogênio/genética , Nodulação/genética , Simbiose/genética , Bactérias , Divisão Celular , Flavonoides , Edição de Genes , Regulação da Expressão Gênica de Plantas , Genômica/história , História do Século XX , História do Século XXI , Homeostase , Interações entre Hospedeiro e Microrganismos/genética , Interações entre Hospedeiro e Microrganismos/fisiologia , Lotus/genética , Medicago truncatula/genética , Fixação de Nitrogênio/fisiologia , Organogênese , Oxigênio , Phaseolus/genética , Reguladores de Crescimento de Plantas , Proteínas de Plantas/genética , Nodulação/fisiologia , Transdução de Sinais , Glycine max/genética , Simbiose/fisiologia
2.
BMC Plant Biol ; 21(1): 128, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33663376

RESUMO

BACKGROUND: Switchgrass (Panicum virgatum L.) is an important bioenergy and forage crop. The outcrossing nature of switchgrass makes it infeasible to maintain a genotype through sexual propagation. Current asexual propagation protocols in switchgrass have various limitations. An easy and highly-efficient vegetative propagation method is needed to propagate large natural collections of switchgrass genotypes for genome-wide association studies (GWAS). RESULTS: Micropropagation by node culture was found to be a rapid method for vegetative propagation of switchgrass. Bacterial and fungal contamination during node culture is a major cause for cultural failure. Adding the biocide, Plant Preservative Mixture (PPM, 0.2%), and the fungicide, Benomyl (5 mg/l), in the incubation solution after surface sterilization and in the culture medium significantly decreased bacterial and fungal contamination. In addition, "shoot trimming" before subculture had a positive effect on shoot multiplication for most genotypes tested. Using the optimized node culture procedure, we successfully propagated 330 genotypes from a switchgrass GWAS panel in three separate experiments. Large variations in shoot induction efficiency and shoot growth were observed among genotypes. Separately, we developed an in planta node culture method by stimulating the growth of aerial axillary buds into shoots directly on the parent plants, through which rooted plants can be generated within 6 weeks. By circumventing the tissue culture step and avoiding application of exterior hormones, the in planta node culture method is labor- and cost-efficient, easy to master, and has a high success rate. Plants generated by the in planta node culture method are similar to seedlings and can be used directly for various experiments. CONCLUSIONS: In this study, we optimized a switchgrass node culture protocol by minimizing bacterial and fungal contamination and increasing shoot multiplication. With this improved protocol, we successfully propagated three quarters of the genotypes in a diverse switchgrass GWAS panel. Furthermore, we established a novel and high-throughput in planta node culture method. Together, these methods provide better options for researchers to accelerate vegetative propagation of switchgrass.


Assuntos
Panicum/crescimento & desenvolvimento , Técnicas de Cultura de Tecidos , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Meios de Cultura , Panicum/efeitos dos fármacos , Panicum/genética , Panicum/microbiologia , Melhoramento Vegetal , Reprodução Assexuada
3.
Plant Physiol ; 183(1): 399-413, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079733

RESUMO

A growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs. Also, SSP-coding small open reading frames are often expressed at low levels or only under specific conditions, and thus are underrepresented in non-tissue-targeted or non-condition-optimized RNA-sequencing projects. We previously identified 4,439 SSP-encoding genes in the model legume Medicago truncatula To support systematic characterization and annotation of these putative SSP-encoding genes, we developed the M. truncatula Small Secreted Peptide Database (MtSSPdb; https://mtsspdb.noble.org/). MtSSPdb currently hosts (1) a compendium of M. truncatula SSP candidates with putative function and family annotations; (2) a large-scale M. truncatula RNA-sequencing-based gene expression atlas integrated with various analytical tools, including differential expression, coexpression, and pathway enrichment analyses; (3) an online plant SSP prediction tool capable of analyzing protein sequences at the genome scale using the same protocol as for the identification of SSP genes; and (4) information about a library of synthetic peptides and root and nodule phenotyping data from synthetic peptide screens in planta. These datasets and analytical tools make MtSSPdb a unique and valuable resource for the plant research community. MtSSPdb also has the potential to become the most complete database of SSPs in plants.


Assuntos
Medicago truncatula/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Bases de Dados Factuais , Genoma de Planta/genética , Peptídeos/genética , Proteínas de Plantas/genética
4.
Plant J ; 98(6): 1106-1119, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30776165

RESUMO

From a single transgenic line harboring five Tnt1 transposon insertions, we generated a near-saturated insertion population in Medicago truncatula. Using thermal asymmetric interlaced-polymerase chain reaction followed by sequencing, we recovered 388 888 flanking sequence tags (FSTs) from 21 741 insertion lines in this population. FST recovery from 14 Tnt1 lines using the whole-genome sequencing (WGS) and/or Tnt1-capture sequencing approaches suggests an average of 80 insertions per line, which is more than the previous estimation of 25 insertions. Analysis of the distribution pattern and preference of Tnt1 insertions showed that Tnt1 is overall randomly distributed throughout the M. truncatula genome. At the chromosomal level, Tnt1 insertions occurred on both arms of all chromosomes, with insertion frequency negatively correlated with the GC content. Based on 174 546 filtered FSTs that show exact insertion locations in the M. truncatula genome version 4.0 (Mt4.0), 0.44 Tnt1 insertions occurred per kb, and 19 583 genes contained Tnt1 with an average of 3.43 insertions per gene. Pathway and gene ontology analyses revealed that Tnt1-inserted genes are significantly enriched in processes associated with 'stress', 'transport', 'signaling' and 'stimulus response'. Surprisingly, gene groups with higher methylation frequency were more frequently targeted for insertion. Analysis of 19 583 Tnt1-inserted genes revealed that 59% (1265) of 2144 transcription factors, 63% (765) of 1216 receptor kinases and 56% (343) of 616 nucleotide-binding site-leucine-rich repeat genes harbored at least one Tnt1 insertion, compared with the overall 38% of Tnt1-inserted genes out of 50 894 annotated genes in the genome.


Assuntos
Biologia Computacional , Elementos de DNA Transponíveis/genética , Genes de Plantas/genética , Medicago truncatula/genética , Mutagênese Insercional , Metilação de DNA , Fenótipo , Plantas Geneticamente Modificadas
5.
Bioinformatics ; 35(14): 2512-2514, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30508039

RESUMO

SUMMARY: We present GWASpro, a high-performance web server for the analyses of large-scale genome-wide association studies (GWAS). GWASpro was developed to provide data analyses for large-scale molecular genetic data, coupled with complex replicated experimental designs such as found in plant science investigations and to overcome the steep learning curves of existing GWAS software tools. GWASpro supports building complex design matrices, by which complex experimental designs that may include replications, treatments, locations and times, can be accounted for in the linear mixed model. GWASpro is optimized to handle GWAS data that may consist of up to 10 million markers and 10 000 samples from replicable lines or hybrids. GWASpro provides an interface that significantly reduces the learning curve for new GWAS investigators. AVAILABILITY AND IMPLEMENTATION: GWASpro is freely available at https://bioinfo.noble.org/GWASPRO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Software , Computadores
6.
New Phytol ; 228(2): 667-681, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533710

RESUMO

Legumes establish symbiotic relationships with soil bacteria (rhizobia), housed in nodules on roots. The plant supplies carbon substrates and other nutrients to the bacteria in exchange for fixed nitrogen. The exchange occurs across a plant-derived symbiosome membrane (SM), which encloses rhizobia to form a symbiosome. Iron supplied by the plant is crucial for rhizobial enzyme nitrogenase that catalyses nitrogen fixation, but the SM iron transporter has not been identified. We use yeast complementation, real-time PCR and proteomics to study putative soybean (Glycine max) iron transporters GmVTL1a and GmVTL1b and have characterized the role of GmVTL1a using complementation in plant mutants, hairy root transformation and microscopy. GmVTL1a and GmVTL1b are members of the vacuolar iron transporter family and homologous to Lotus japonicus SEN1 (LjSEN1), which is essential for nitrogen fixation. GmVTL1a expression is enhanced in nodule infected cells and both proteins are localized to the SM. GmVTL1a transports iron in yeast and restores nitrogen fixation when expressed in the Ljsen1 mutant. Three GmVTL1a amino acid substitutions that block nitrogen fixation in Ljsen1 plants reduce iron transport in yeast. We conclude GmVTL1a is responsible for transport of iron across the SM to bacteroids and plays a crucial role in the nitrogen-fixing symbiosis.


Assuntos
Glycine max , Fixação de Nitrogênio , Ferro , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Glycine max/genética , Glycine max/metabolismo , Simbiose
7.
Plant Physiol ; 180(3): 1480-1497, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31061106

RESUMO

Symbiotic nitrogen fixation by rhizobia in legume root nodules is a key source of nitrogen for sustainable agriculture. Genetic approaches have revealed important roles for only a few of the thousands of plant genes expressed during nodule development and symbiotic nitrogen fixation. Previously, we isolated >100 nodulation and nitrogen fixation mutants from a population of Tnt1-insertion mutants of Medigaco truncatula Using Tnt1 as a tag to identify genetic lesions in these mutants, we discovered that insertions in a M. truncatula nodule-specific polycystin-1, lipoxygenase, α-toxin (PLAT) domain-encoding gene, MtNPD1, resulted in development of ineffective nodules. Early stages of nodule development and colonization by the nitrogen-fixing bacterium Sinorhizobium meliloti appeared to be normal in the npd1 mutant. However, npd1 nodules ceased to grow after a few days, resulting in abnormally small, ineffective nodules. Rhizobia that colonized developing npd1 nodules did not differentiate completely into nitrogen-fixing bacteroids and quickly degraded. MtNPD1 expression was low in roots but increased significantly in developing nodules 4 d postinoculation, and expression accompanied invading rhizobia in the nodule infection zone and into the distal nitrogen fixation zone. A functional MtNPD1:GFP fusion protein localized in the space surrounding symbiosomes in infected cells. When ectopically expressed in tobacco (Nicotiana tabacum) leaves, MtNPD1 colocalized with vacuoles and the endoplasmic reticulum. MtNPD1 belongs to a cluster of five nodule-specific single PLAT domain-encoding genes, with apparent nonredundant functions.


Assuntos
Regulação da Expressão Gênica de Plantas , Fixação de Nitrogênio/genética , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/genética , Simbiose/genética , Medicago truncatula/genética , Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Mutação , Nitrogênio/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Sinorhizobium meliloti/fisiologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
8.
Plant Physiol ; 176(3): 2315-2329, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29284744

RESUMO

Iron (Fe) is an essential micronutrient for symbiotic nitrogen fixation in legume nodules, where it is required for the activity of bacterial nitrogenase, plant leghemoglobin, respiratory oxidases, and other Fe proteins in both organisms. Fe solubility and transport within and between plant tissues is facilitated by organic chelators, such as nicotianamine and citrate. We have characterized a nodule-specific citrate transporter of the multidrug and toxic compound extrusion family, MtMATE67 of Medicago truncatula The MtMATE67 gene was induced early during nodule development and expressed primarily in the invasion zone of mature nodules. The MtMATE67 protein was localized to the plasma membrane of nodule cells and also the symbiosome membrane surrounding bacteroids in infected cells. In oocytes, MtMATE67 transported citrate out of cells in an Fe-activated manner. Loss of MtMATE67 gene function resulted in accumulation of Fe in the apoplasm of nodule cells and a substantial decrease in symbiotic nitrogen fixation and plant growth. Taken together, the results point to a primary role of MtMATE67 in citrate efflux from nodule cells in response to an Fe signal. This efflux is necessary to ensure Fe(III) solubility and mobility in the apoplasm and uptake into nodule cells. Likewise, MtMATE67-mediated citrate transport into the symbiosome space would increase the solubility and availability of Fe(III) for rhizobial bacteroids.


Assuntos
Ferro/metabolismo , Medicago truncatula/fisiologia , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas , Ferro/farmacocinética , Medicago truncatula/microbiologia , Mutação , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia
9.
New Phytol ; 218(2): 696-709, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29349810

RESUMO

Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Cobre/metabolismo , Medicago truncatula/metabolismo , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Simbiose , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Diferenciação Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cobre/farmacologia , Transportador de Cobre 1 , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Medicago truncatula/citologia , Família Multigênica , Mutação/genética , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/metabolismo , Fenótipo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/efeitos dos fármacos , Nódulos Radiculares de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Simbiose/efeitos dos fármacos
10.
Plant Physiol ; 175(4): 1669-1689, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030416

RESUMO

Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the Medicago truncatula genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Nodulação/fisiologia , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Transcriptoma
11.
Plant Cell ; 27(9): 2384-400, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26296963

RESUMO

We combined transcriptomic and biochemical approaches to study rhizobial and plant sulfur (S) metabolism in nitrogen (N) fixing nodules (Fix(+)) of Lotus japonicus, as well as the link of S-metabolism to symbiotic nitrogen fixation and the effect of nodules on whole-plant S-partitioning and metabolism. Our data reveal that N-fixing nodules are thiol-rich organs. Their high adenosine 5'-phosphosulfate reductase activity and strong (35)S-flux into cysteine and its metabolites, in combination with the transcriptional upregulation of several rhizobial and plant genes involved in S-assimilation, highlight the function of nodules as an important site of S-assimilation. The higher thiol content observed in nonsymbiotic organs of N-fixing plants in comparison to uninoculated plants could not be attributed to local biosynthesis, indicating that nodules are an important source of reduced S for the plant, which triggers whole-plant reprogramming of S-metabolism. Enhanced thiol biosynthesis in nodules and their impact on the whole-plant S-economy are dampened in plants nodulated by Fix(-) mutant rhizobia, which in most respects metabolically resemble uninoculated plants, indicating a strong interdependency between N-fixation and S-assimilation.


Assuntos
Lotus/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação da Expressão Gênica de Plantas , Lotus/genética , Lotus/fisiologia , Mesorhizobium/genética , Mesorhizobium/fisiologia , Fixação de Nitrogênio , Oxirredutases/genética , Oxirredutases/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas de Plantas/metabolismo , Compostos de Sulfidrila/metabolismo , Radioisótopos de Enxofre/metabolismo , Radioisótopos de Enxofre/farmacocinética , Simbiose , Distribuição Tecidual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Plant Cell ; 27(4): 1352-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25841038

RESUMO

During arbuscular mycorrhizal (AM) symbiosis, the plant gains access to phosphate (Pi) and nitrogen delivered by its fungal symbiont. Transfer of mineral nutrients occurs at the interface between branched hyphae called arbuscules and root cortical cells. In Medicago truncatula, a Pi transporter, PT4, is required for symbiotic Pi transport, and in pt4, symbiotic Pi transport fails, arbuscules degenerate prematurely, and the symbiosis is not maintained. Premature arbuscule degeneration (PAD) is suppressed when pt4 mutants are nitrogen-deprived, possibly the result of compensation by PT8, a second AM-induced Pi transporter. However, PAD is also suppressed in nitrogen-starved pt4 pt8 double mutants, negating this hypothesis and furthermore indicating that in this condition, neither of these symbiotic Pi transporters is required for symbiosis. In M. truncatula, three AMT2 family ammonium transporters are induced during AM symbiosis. To test the hypothesis that suppression of PAD involves AMT2 transporters, we analyzed double and triple Pi and ammonium transporter mutants. ATM2;3 but not AMT2;4 was required for suppression of PAD in pt4, while AMT2;4, but not AMT2;3, complemented growth of a yeast ammonium transporter mutant. In summary, arbuscule life span is influenced by PT4 and ATM2;3, and their relative importance varies with the nitrogen status of the plant.


Assuntos
Medicago truncatula/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Simbiose
13.
Proc Natl Acad Sci U S A ; 112(49): 15232-7, 2015 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-26401023

RESUMO

Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.


Assuntos
Cisteína/química , Medicago truncatula/fisiologia , Mutação , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/fisiologia , Medicago truncatula/genética , Proteínas de Plantas/química , Simbiose
14.
Plant Physiol ; 171(1): 554-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27021190

RESUMO

Optimization of nitrogen fixation by rhizobia in legumes is a key area of research for sustainable agriculture. Symbiotic nitrogen fixation (SNF) occurs in specialized organs called nodules and depends on a steady supply of carbon to both plant and bacterial cells. Here we report the functional characterization of a nodule-specific Suc transporter, MtSWEET11 from Medicago truncatula MtSWEET11 belongs to a clade of plant SWEET proteins that are capable of transporting Suc and play critical roles in pathogen susceptibility. When expressed in mammalian cells, MtSWEET11 transported sucrose (Suc) but not glucose (Glc). The MtSWEET11 gene was found to be expressed in infected root hair cells, and in the meristem, invasion zone, and vasculature of nodules. Expression of an MtSWEET11-GFP fusion protein in nodules resulted in green fluorescence associated with the plasma membrane of uninfected cells and infection thread and symbiosome membranes of infected cells. Two independent Tnt1-insertion sweet11 mutants were uncompromised in SNF Therefore, although MtSWEET11 appears to be involved in Suc distribution within nodules, it is not crucial for SNF, probably because other Suc transporters can fulfill its role(s).


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/metabolismo , Mutação , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Sacarose/metabolismo , Simbiose/fisiologia
15.
Plant Physiol ; 170(4): 2204-17, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26884486

RESUMO

The symbiosis between leguminous plants and soil rhizobia culminates in the formation of nitrogen-fixing organs called nodules that support plant growth. Two Medicago truncatula Tnt1-insertion mutants were identified that produced small nodules, which were unable to fix nitrogen effectively due to ineffective rhizobial colonization. The gene underlying this phenotype was found to encode a protein containing a putative membrane-localized domain of unknown function (DUF21) and a cystathionine-ß-synthase domain. The cbs1 mutants had defective infection threads that were sometimes devoid of rhizobia and formed small nodules with greatly reduced numbers of symbiosomes. We studied the expression of the gene, designated M truncatula Cystathionine-ß-Synthase-like1 (MtCBS1), using a promoter-ß-glucuronidase gene fusion, which revealed expression in infected root hair cells, developing nodules, and in the invasion zone of mature nodules. An MtCBS1-GFP fusion protein localized itself to the infection thread and symbiosomes. Nodulation factor-induced Ca(2+) responses were observed in the cbs1 mutant, indicating that MtCBS1 acts downstream of nodulation factor signaling. MtCBS1 expression occurred exclusively during Medicago-rhizobium symbiosis. Induction of MtCBS1 expression during symbiosis was found to be dependent on Nodule Inception (NIN), a key transcription factor that controls both rhizobial infection and nodule organogenesis. Interestingly, the closest homolog of MtCBS1, MtCBS2, was specifically induced in mycorrhizal roots, suggesting common infection mechanisms in nodulation and mycorrhization. Related proteins in Arabidopsis have been implicated in cell wall maturation, suggesting a potential role for CBS1 in the formation of the infection thread wall.


Assuntos
Cistationina beta-Sintase/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Fixação de Nitrogênio , Proteínas de Plantas/metabolismo , Rhizobium/fisiologia , Simbiose , Cistationina beta-Sintase/química , Cistationina beta-Sintase/genética , Endocitose , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Fluorescência Verde/metabolismo , Medicago truncatula/genética , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Nodulação , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Nódulos Radiculares de Plantas/genética
16.
Nature ; 480(7378): 520-4, 2011 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-22089132

RESUMO

Legumes (Fabaceae or Leguminosae) are unique among cultivated plants for their ability to carry out endosymbiotic nitrogen fixation with rhizobial bacteria, a process that takes place in a specialized structure known as the nodule. Legumes belong to one of the two main groups of eurosids, the Fabidae, which includes most species capable of endosymbiotic nitrogen fixation. Legumes comprise several evolutionary lineages derived from a common ancestor 60 million years ago (Myr ago). Papilionoids are the largest clade, dating nearly to the origin of legumes and containing most cultivated species. Medicago truncatula is a long-established model for the study of legume biology. Here we describe the draft sequence of the M. truncatula euchromatin based on a recently completed BAC assembly supplemented with Illumina shotgun sequence, together capturing ∼94% of all M. truncatula genes. A whole-genome duplication (WGD) approximately 58 Myr ago had a major role in shaping the M. truncatula genome and thereby contributed to the evolution of endosymbiotic nitrogen fixation. Subsequent to the WGD, the M. truncatula genome experienced higher levels of rearrangement than two other sequenced legumes, Glycine max and Lotus japonicus. M. truncatula is a close relative of alfalfa (Medicago sativa), a widely cultivated crop with limited genomics tools and complex autotetraploid genetics. As such, the M. truncatula genome sequence provides significant opportunities to expand alfalfa's genomic toolbox.


Assuntos
Evolução Biológica , Genoma de Planta , Medicago truncatula/genética , Medicago truncatula/microbiologia , Rhizobium/fisiologia , Simbiose , Dados de Sequência Molecular , Fixação de Nitrogênio/genética , Glycine max/genética , Sintenia , Vitis/genética
17.
Appl Environ Microbiol ; 82(13): 3698-3710, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27084023

RESUMO

Access to fixed or available forms of nitrogen limits the productivity of crop plants and thus food production. Nitrogenous fertilizer production currently represents a significant expense for the efficient growth of various crops in the developed world. There are significant potential gains to be had from reducing dependence on nitrogenous fertilizers in agriculture in the developed world and in developing countries, and there is significant interest in research on biological nitrogen fixation and prospects for increasing its importance in an agricultural setting. Biological nitrogen fixation is the conversion of atmospheric N2 to NH3, a form that can be used by plants. However, the process is restricted to bacteria and archaea and does not occur in eukaryotes. Symbiotic nitrogen fixation is part of a mutualistic relationship in which plants provide a niche and fixed carbon to bacteria in exchange for fixed nitrogen. This process is restricted mainly to legumes in agricultural systems, and there is considerable interest in exploring whether similar symbioses can be developed in nonlegumes, which produce the bulk of human food. We are at a juncture at which the fundamental understanding of biological nitrogen fixation has matured to a level that we can think about engineering symbiotic relationships using synthetic biology approaches. This minireview highlights the fundamental advances in our understanding of biological nitrogen fixation in the context of a blueprint for expanding symbiotic nitrogen fixation to a greater diversity of crop plants through synthetic biology.


Assuntos
Bactérias/metabolismo , Fixação de Nitrogênio , Plantas/metabolismo , Plantas/microbiologia , Simbiose , Bactérias/crescimento & desenvolvimento
18.
Plant Cell ; 25(9): 3584-601, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24082011

RESUMO

Transcription factors (TFs) are thought to regulate many aspects of nodule and symbiosis development in legumes, although few TFs have been characterized functionally. Here, we describe regulator of symbiosome differentiation (RSD) of Medicago truncatula, a member of the Cysteine-2/Histidine-2 (C2H2) family of plant TFs that is required for normal symbiosome differentiation during nodule development. RSD is expressed in a nodule-specific manner, with maximal transcript levels in the bacterial invasion zone. A tobacco (Nicotiana tabacum) retrotransposon (Tnt1) insertion rsd mutant produced nodules that were unable to fix nitrogen and that contained incompletely differentiated symbiosomes and bacteroids. RSD protein was localized to the nucleus, consistent with a role of the protein in transcriptional regulation. RSD acted as a transcriptional repressor in a heterologous yeast assay. Transcriptome analysis of an rsd mutant identified 11 genes as potential targets of RSD repression. RSD interacted physically with the promoter of one of these genes, VAMP721a, which encodes vesicle-associated membrane protein 721a. Thus, RSD may influence symbiosome development in part by repressing transcription of VAMP721a and modifying vesicle trafficking in nodule cells. This establishes RSD as a TF implicated directly in symbiosome and bacteroid differentiation and a transcriptional regulator of secretory pathway genes in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Medicago truncatula/genética , Proteínas de Plantas/metabolismo , Sequência de Bases , Diferenciação Celular , Perfilação da Expressão Gênica , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/microbiologia , Modelos Biológicos , Anotação de Sequência Molecular , Dados de Sequência Molecular , Mutagênese Insercional , Fixação de Nitrogênio , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/genética , Nodulação , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Via Secretória , Análise de Sequência de DNA , Sinorhizobium meliloti/fisiologia , Simbiose , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 17(9)2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27618017

RESUMO

Legume seeds are important as protein and oil source for human diet. Understanding how their final seed size is determined is crucial to improve crop yield. In this study, we analyzed seed development of three accessions of the model legume, Medicago truncatula, displaying contrasted seed size. By comparing two large seed accessions to the reference accession A17, we described mechanisms associated with large seed size determination and potential factors modulating the final seed size. We observed that early events during embryogenesis had a major impact on final seed size and a delayed heart stage embryo development resulted to large seeds. We also observed that the difference in seed growth rate was mainly due to a difference in embryo cell number, implicating a role of cell division rate. Large seed accessions could be explained by an extended period of cell division due to a longer embryogenesis phase. According to our observations and recent reports, we observed that auxin (IAA) and abscisic acid (ABA) ratio could be a key determinant of cell division regulation at the end of embryogenesis. Overall, our study highlights that timing of events occurring during early seed development play decisive role for final seed size determination.


Assuntos
Ácido Abscísico/metabolismo , Ácidos Indolacéticos/metabolismo , Medicago truncatula/metabolismo , Sementes/crescimento & desenvolvimento , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Desenvolvimento Vegetal , Sementes/metabolismo
20.
Plant Biotechnol J ; 13(5): 636-47, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25400275

RESUMO

Gibberellin 2-oxidases (GA2oxs) are a group of 2-oxoglutarate-dependent dioxygenases that catalyse the deactivation of bioactive GA or its precursors through 2ß-hydroxylation reaction. In this study, putatively novel switchgrass C20 GA2ox genes were identified with the aim of genetically engineering switchgrass for improved architecture and reduced biomass recalcitrance for biofuel. Three C20 GA2ox genes showed differential regulation patterns among tissues including roots, seedlings and reproductive parts. Using a transgenic approach, we showed that overexpression of two C20 GA2ox genes, that is PvGA2ox5 and PvGA2ox9, resulted in characteristic GA-deficient phenotypes with dark-green leaves and modified plant architecture. The changes in plant morphology appeared to be associated with GA2ox transcript abundance. Exogenous application of GA rescued the GA-deficient phenotypes in transgenic lines. Transgenic semi-dwarf lines displayed increased tillering and reduced lignin content, and the syringyl/guaiacyl lignin monomer ratio accompanied by the reduced expression of lignin biosynthetic genes compared to nontransgenic plants. A moderate increase in the level of glucose release in these transgenic lines might be attributed to reduced biomass recalcitrance as a result of reduced lignin content and lignin composition. Our results suggest that overexpression of GA2ox genes in switchgrass is a feasible strategy to improve plant architecture and reduce biomass recalcitrance for biofuel.


Assuntos
Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Oxigenases de Função Mista/genética , Panicum/enzimologia , Biocombustíveis , Biomassa , Regulação Enzimológica da Expressão Gênica , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/metabolismo , Panicum/genética , Panicum/crescimento & desenvolvimento , Fenótipo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plântula/enzimologia , Plântula/genética , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA