Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
ISME J ; 17(3): 326-339, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517527

RESUMO

Horizontal gene transfer is a powerful source of innovations in prokaryotes that can affect almost any cellular system, including microbial organelles. The formation of magnetosomes, one of the most sophisticated microbial mineral-containing organelles synthesized by magnetotactic bacteria for magnetic navigation in the environment, was also shown to be a horizontally transferrable trait. However, the mechanisms determining the fate of such genes in new hosts are not well understood, since non-adaptive gene acquisitions are typically rapidly lost and become unavailable for observation. This likely explains why gene clusters encoding magnetosome biosynthesis have never been observed in non-magnetotactic bacteria. Here, we report the first discovery of a horizontally inherited dormant gene clusters encoding biosynthesis of magnetosomes in a non-magnetotactic phototrophic bacterium Rhodovastum atsumiense. We show that these clusters were inactivated through transcriptional silencing and antisense RNA regulation, but retain functionality, as several genes were able to complement the orthologous deletions in a remotely related magnetotactic bacterium. The laboratory transfer of foreign magnetosome genes to R. atsumiense was found to endow the strain with magnetosome biosynthesis, but strong negative selection led to rapid loss of this trait upon subcultivation, highlighting the trait instability in this organism. Our results provide insight into the horizontal dissemination of gene clusters encoding complex prokaryotic organelles and illuminate the potential mechanisms of their genomic preservation in a dormant state.


Assuntos
Magnetossomos , Magnetospirillum , Magnetospirillum/genética , Magnetossomos/genética , Bactérias/genética , Bactérias Gram-Negativas/genética , Bactérias Aeróbias/genética , Família Multigênica , Fenômenos Magnéticos , Proteínas de Bactérias/genética
2.
J Appl Microbiol ; 108(3): 789-799, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19702859

RESUMO

AIM: To complete our study on tannin degradation via gallic acid by the biotechnologically interesting yeast Arxula adeninivorans as well as to characterize new degradation pathways of hydroxylated aromatic acids. METHODS AND RESULTS: With glucose-grown cells of A. adeninivorans, transformation experiments with hydroxylated derivatives of benzoic acid were carried out. The 12 metabolites were analysed and identified by high performance liquid chromatography and GC/MS. The yeast is able to transform the derivatives by oxidative and nonoxidative decarboxylation as well as by methoxylation. The products of nonoxidative decarboxylation of protocatechuate and gallic acid are substrates for further ring fission. CONCLUSION: Whereas other organisms use only one route of transformation, A. adeninivorans is able to carry out three different pathways (oxidative, nonoxidative decarboxylation and methoxylation) on one hydroxylated aromatic acid. The determination of the KM-values for protocatechuate and gallic acid in crude extracts of cells of A. adeninivorans cultivated with protocatechuate and gallic acid, respectively, suggests that the decarboxylation of protocatechuate and gallic acid may be catalysed by the same enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY: This transformation pathway of protocatechuate and gallic acid via nonoxidative decarboxylation up to ring fission is novel and has not been described so far. This is also the first report of nonoxidative decarboxylation of gallic acid by a eukaryotic micro-organism.


Assuntos
Ácido Gálico/metabolismo , Parabenos/metabolismo , Saccharomycetales/metabolismo , Descarboxilação , Hidroxibenzoatos/metabolismo , Oxirredução , Saccharomycetales/crescimento & desenvolvimento , Taninos/metabolismo
3.
Nanoscale ; 9(18): 5788-5793, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28447690

RESUMO

The magnetic particle spectrum (MPS) of bacterial magnetosomes, isolated from Magnetospirillum gryphiswaldense, is measured and compared to that of the current "gold standard", Resovist®. It is shown that the amplitudes of the magnetosomes' harmonics by far exceed that of Resovist®; the amplitude of the third harmonic is higher by a factor of 7, and is the highest value obtained for iron oxide nanoparticles to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA