Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mol Cell ; 68(5): 970-977.e11, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220658

RESUMO

Mitoproteases are becoming recognized as key regulators of diverse mitochondrial functions, although their direct substrates are often difficult to discern. Through multi-omic profiling of diverse Saccharomyces cerevisiae mitoprotease deletion strains, we predicted numerous associations between mitoproteases and distinct mitochondrial processes. These include a strong association between the mitochondrial matrix octapeptidase Oct1p and coenzyme Q (CoQ) biosynthesis-a pathway essential for mitochondrial respiration. Through Edman sequencing and in vitro and in vivo biochemistry, we demonstrated that Oct1p directly processes the N terminus of the CoQ-related methyltransferase, Coq5p, which markedly improves its stability. A single mutation to the Oct1p recognition motif in Coq5p disrupted its processing in vivo, leading to CoQ deficiency and respiratory incompetence. This work defines the Oct1p processing of Coq5p as an essential post-translational event for proper CoQ production. Additionally, our data visualization tool enables efficient exploration of mitoprotease profiles that can serve as the basis for future mechanistic investigations.


Assuntos
Aminopeptidases/metabolismo , Metabolismo Energético , Metabolômica/métodos , Metiltransferases/metabolismo , Mitocôndrias/enzimologia , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Aminopeptidases/genética , Estabilidade Enzimática , Genótipo , Metiltransferases/genética , Mutação , Fenótipo , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Ubiquinona/genética
2.
Mol Cell ; 63(4): 621-632, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499296

RESUMO

Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function.


Assuntos
Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteômica/métodos , Bases de Dados de Proteínas , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Células HEK293 , Células Hep G2 , Humanos , Proteínas Mitocondriais/genética , Interferência de RNA , Transdução de Sinais , Transfecção , Ubiquinona/metabolismo
3.
Mol Cell ; 63(4): 608-620, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27499294

RESUMO

The UbiB protein kinase-like (PKL) family is widespread, comprising one-quarter of microbial PKLs and five human homologs, yet its biochemical activities remain obscure. COQ8A (ADCK3) is a mammalian UbiB protein associated with ubiquinone (CoQ) biosynthesis and an ataxia (ARCA2) through unclear means. We show that mice lacking COQ8A develop a slowly progressive cerebellar ataxia linked to Purkinje cell dysfunction and mild exercise intolerance, recapitulating ARCA2. Interspecies biochemical analyses show that COQ8A and yeast Coq8p specifically stabilize a CoQ biosynthesis complex through unorthodox PKL functions. Although COQ8 was predicted to be a protein kinase, we demonstrate that it lacks canonical protein kinase activity in trans. Instead, COQ8 has ATPase activity and interacts with lipid CoQ intermediates, functions that are likely conserved across all domains of life. Collectively, our results lend insight into the molecular activities of the ancient UbiB family and elucidate the biochemical underpinnings of a human disease.


Assuntos
Comportamento Animal , Ataxia Cerebelar/enzimologia , Cerebelo/enzimologia , Proteínas Mitocondriais/deficiência , Músculo Esquelético/enzimologia , Ubiquinona/deficiência , Animais , Células COS , Ataxia Cerebelar/genética , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/psicologia , Cerebelo/fisiopatologia , Cerebelo/ultraestrutura , Chlorocebus aethiops , Modelos Animais de Doenças , Tolerância ao Exercício , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Metabolismo dos Lipídeos , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Atividade Motora , Força Muscular , Músculo Esquelético/fisiopatologia , Fenótipo , Ligação Proteica , Conformação Proteica , Proteômica/métodos , Reconhecimento Psicológico , Teste de Desempenho do Rota-Rod , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Convulsões/enzimologia , Convulsões/genética , Convulsões/fisiopatologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Ubiquinona/química , Ubiquinona/genética
4.
Mol Cell ; 57(1): 83-94, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25498144

RESUMO

The ancient UbiB protein kinase-like family is involved in isoprenoid lipid biosynthesis and is implicated in human diseases, but demonstration of UbiB kinase activity has remained elusive for unknown reasons. Here, we quantitatively define UbiB-specific sequence motifs and reveal their positions within the crystal structure of a UbiB protein, ADCK3. We find that multiple UbiB-specific features are poised to inhibit protein kinase activity, including an N-terminal domain that occupies the typical substrate binding pocket and a unique A-rich loop that limits ATP binding by establishing an unusual selectivity for ADP. A single alanine-to-glycine mutation of this loop flips this coenzyme selectivity and enables autophosphorylation but inhibits coenzyme Q biosynthesis in vivo, demonstrating functional relevance for this unique feature. Our work provides mechanistic insight into UbiB enzyme activity and establishes a molecular foundation for further investigation of how UbiB family proteins affect diseases and diverse biological pathways.


Assuntos
Mitocôndrias/química , Proteínas Mitocondriais/química , Ubiquinona/química , Sequência de Aminoácidos , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Ubiquinona/biossíntese
5.
Nature ; 515(7526): 249-52, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363781

RESUMO

Lignin is a heterogeneous aromatic biopolymer that accounts for nearly 30% of the organic carbon on Earth and is one of the few renewable sources of aromatic chemicals. As the most recalcitrant of the three components of lignocellulosic biomass (cellulose, hemicellulose and lignin), lignin has been treated as a waste product in the pulp and paper industry, where it is burned to supply energy and recover pulping chemicals in the operation of paper mills. Extraction of higher value from lignin is increasingly recognized as being crucial to the economic viability of integrated biorefineries. Depolymerization is an important starting point for many lignin valorization strategies, because it could generate valuable aromatic chemicals and/or provide a source of low-molecular-mass feedstocks suitable for downstream processing. Commercial precedents show that certain types of lignin (lignosulphonates) may be converted into vanillin and other marketable products, but new technologies are needed to enhance the lignin value chain. The complex, irregular structure of lignin complicates chemical conversion efforts, and known depolymerization methods typically afford ill-defined products in low yields (that is, less than 10-20wt%). Here we describe a method for the depolymerization of oxidized lignin under mild conditions in aqueous formic acid that results in more than 60wt% yield of low-molecular-mass aromatics. We present the discovery of this facile C-O cleavage method, its application to aspen lignin depolymerization, and mechanistic insights into the reaction. The broader implications of these results for lignin conversion and biomass refining are also considered.


Assuntos
Formiatos/química , Lignina/química , Polimerização , Biomassa , Estrutura Molecular
6.
J Biol Chem ; 293(14): 4955-4968, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29449375

RESUMO

As a major component of plant cell walls, lignin is a potential renewable source of valuable chemicals. Several sphingomonad bacteria have been identified that can break the ß-aryl ether bond connecting most phenylpropanoid units of the lignin heteropolymer. Here, we tested three sphingomonads predicted to be capable of breaking the ß-aryl ether bond of the dimeric aromatic compound guaiacylglycerol-ß-guaiacyl ether (GGE) and found that Novosphingobium aromaticivorans metabolizes GGE at one of the fastest rates thus far reported. After the ether bond of racemic GGE is broken by replacement with a thioether bond involving glutathione, the glutathione moiety must be removed from the resulting two stereoisomers of the phenylpropanoid conjugate ß-glutathionyl-γ-hydroxypropiovanillone (GS-HPV). We found that the Nu-class glutathione S-transferase NaGSTNu is the only enzyme needed to remove glutathione from both (R)- and (S)-GS-HPV in N. aromaticivorans We solved the crystal structure of NaGSTNu and used molecular modeling to propose a mechanism for the glutathione lyase (deglutathionylation) reaction in which an enzyme-stabilized glutathione thiolate attacks the thioether bond of GS-HPV, and the reaction proceeds through an enzyme-stabilized enolate intermediate. Three residues implicated in the proposed mechanism (Thr51, Tyr166, and Tyr224) were found to be critical for the lyase reaction. We also found that Nu-class GSTs from Sphingobium sp. SYK-6 (which can also break the ß-aryl ether bond) and Escherichia coli (which cannot break the ß-aryl ether bond) can also cleave (R)- and (S)-GS-HPV, suggesting that glutathione lyase activity may be common throughout this widespread but largely uncharacterized class of glutathione S-transferases.


Assuntos
Glutationa Transferase/metabolismo , Lignina/metabolismo , Sphingomonadaceae/enzimologia , Substituição de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Glutationa Transferase/química , Glutationa Transferase/genética , Lignina/química , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Sphingomonadaceae/química , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Estereoisomerismo , Especificidade por Substrato , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 112(12): E1490-7, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25775513

RESUMO

A rise in resistance to current antifungals necessitates strategies to identify alternative sources of effective fungicides. We report the discovery of poacic acid, a potent antifungal compound found in lignocellulosic hydrolysates of grasses. Chemical genomics using Saccharomyces cerevisiae showed that loss of cell wall synthesis and maintenance genes conferred increased sensitivity to poacic acid. Morphological analysis revealed that cells treated with poacic acid behaved similarly to cells treated with other cell wall-targeting drugs and mutants with deletions in genes involved in processes related to cell wall biogenesis. Poacic acid causes rapid cell lysis and is synergistic with caspofungin and fluconazole. The cellular target was identified; poacic acid localized to the cell wall and inhibited ß-1,3-glucan synthesis in vivo and in vitro, apparently by directly binding ß-1,3-glucan. Through its activity on the glucan layer, poacic acid inhibits growth of the fungi Sclerotinia sclerotiorum and Alternaria solani as well as the oomycete Phytophthora sojae. A single application of poacic acid to leaves infected with the broad-range fungal pathogen S. sclerotiorum substantially reduced lesion development. The discovery of poacic acid as a natural antifungal agent targeting ß-1,3-glucan highlights the potential side use of products generated in the processing of renewable biomass toward biofuels as a source of valuable bioactive compounds and further clarifies the nature and mechanism of fermentation inhibitors found in lignocellulosic hydrolysates.


Assuntos
Ácidos Cumáricos/química , Fungicidas Industriais/química , Poaceae/química , Saccharomyces cerevisiae/efeitos dos fármacos , Estilbenos/química , beta-Glucanas/química , Caspofungina , Membrana Celular/metabolismo , Parede Celular/metabolismo , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Equinocandinas/química , Genômica , Hidrólise , Concentração Inibidora 50 , Lignina/química , Lipopeptídeos , Extratos Vegetais/química , Saccharomyces cerevisiae/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(44): E4697-705, 2014 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-25339443

RESUMO

Coenzyme Q (CoQ) is an isoprenylated quinone that is essential for cellular respiration and is synthesized in mitochondria by the combined action of at least nine proteins (COQ1-9). Although most COQ proteins are known to catalyze modifications to CoQ precursors, the biochemical role of COQ9 remains unclear. Here, we report that a disease-related COQ9 mutation leads to extensive disruption of the CoQ protein biosynthetic complex in a mouse model, and that COQ9 specifically interacts with COQ7 through a series of conserved residues. Toward understanding how COQ9 can perform these functions, we solved the crystal structure of Homo sapiens COQ9 at 2.4 Å. Unexpectedly, our structure reveals that COQ9 has structural homology to the TFR family of bacterial transcriptional regulators, but that it adopts an atypical TFR dimer orientation and is not predicted to bind DNA. Our structure also reveals a lipid-binding site, and mass spectrometry-based analyses of purified COQ9 demonstrate that it associates with multiple lipid species, including CoQ itself. The conserved COQ9 residues necessary for its interaction with COQ7 comprise a surface patch around the lipid-binding site, suggesting that COQ9 might serve to present its bound lipid to COQ7. Collectively, our data define COQ9 as the first, to our knowledge, mammalian TFR structural homolog and suggest that its lipid-binding capacity and association with COQ7 are key features for enabling CoQ biosynthesis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Ubiquinona/biossíntese , Animais , Proteínas de Transporte/genética , Cristalografia por Raios X , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Proteínas Mitocondriais/genética , Oxigenases de Função Mista , Estrutura Terciária de Proteína , Ubiquinona/genética
9.
Mol Cell Proteomics ; 13(1): 339-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24143002

RESUMO

We describe the comprehensive analysis of the yeast proteome in just over one hour of optimized analysis. We achieve this expedited proteome characterization with improved sample preparation, chromatographic separations, and by using a new Orbitrap hybrid mass spectrometer equipped with a mass filter, a collision cell, a high-field Orbitrap analyzer, and, finally, a dual cell linear ion trap analyzer (Q-OT-qIT, Orbitrap Fusion). This system offers high MS(2) acquisition speed of 20 Hz and detects up to 19 peptide sequences within a single second of operation. Over a 1.3 h chromatographic method, the Q-OT-qIT hybrid collected an average of 13,447 MS(1) and 80,460 MS(2) scans (per run) to produce 43,400 (x) peptide spectral matches and 34,255 (x) peptides with unique amino acid sequences (1% false discovery rate (FDR)). On average, each one hour analysis achieved detection of 3,977 proteins (1% FDR). We conclude that further improvements in mass spectrometer scan rate could render comprehensive analysis of the human proteome within a few hours.


Assuntos
Proteoma/genética , Saccharomyces cerevisiae/genética , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Humanos , Peso Molecular , Peptídeos/química , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Anal Chem ; 87(16): 8328-35, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26192401

RESUMO

Gas chromatography/mass spectrometry (GC/MS) has long been considered one of the premiere analytical tools for small molecule analysis. Recently, a number of GC/MS systems equipped with high-resolution mass analyzers have been introduced. These systems provide analysts with a new dimension of information, accurate mass measurement to the third or fourth decimal place; however, existing data processing tools do not capitalize on this information. Beyond that, GC/MS spectral reference libraries, which have been curated over the last several decades, contain almost exclusively unit resolution MS spectra making integration of accurate mass data dubious. Here we present an informatic approach, called high-resolution filtering (HRF), which bridges this gap. During HRF, high-resolution mass spectra are assigned putative identifications through traditional spectral matching at unit resolution. Once candidate identities have been assigned, all unique combinations of atoms from these candidate precursors are generated and matched to m/z peaks using narrow mass tolerances. The total amount of measured signal that is annotated is used as a metric of plausibility for the presumed identification. Here we demonstrate that the HRF approach is both feasible and highly specific toward correct identifications.


Assuntos
Filtração , Cromatografia Gasosa-Espectrometria de Massas , Bibliotecas de Moléculas Pequenas/química , Urinálise/métodos , Preparações Farmacêuticas/urina , Bibliotecas de Moléculas Pequenas/isolamento & purificação , Urinálise/instrumentação
11.
Environ Sci Technol ; 49(14): 8914-22, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26121369

RESUMO

Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.


Assuntos
Hidrocarbonetos Aromáticos/metabolismo , Rodopseudomonas/metabolismo , Resíduos , Zea mays/química , Amônia/farmacologia , Anaerobiose/efeitos dos fármacos , Ácido Benzoico/química , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , Biotransformação/efeitos dos fármacos , Carboidratos/análise , Hidrocarbonetos Aromáticos/química , Hidrólise , Lignina/metabolismo , Mutação , Rhodobacter sphaeroides/efeitos dos fármacos , Rhodobacter sphaeroides/metabolismo , Rodopseudomonas/efeitos dos fármacos , Rodopseudomonas/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos
12.
Anal Chem ; 86(9): 4402-8, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24684282

RESUMO

We have developed a multiplexed quantitative analysis method for carboxylic acids by liquid chromatography high resolution mass spectrometry. The method employs neutron encoded (NeuCode) methylamine labels ((13)C or (15)N enriched) that are affixed to carboxylic acid functional groups to enable duplex quantitation via mass defect measurement. This work presents the first application of NeuCode quantitation to small molecules. We have applied this technique to detect adulteration of olive oil by quantitative analysis of fatty acid methyl amide derivatives, and the quantitative accuracy of the NeuCode analysis was validated by GC/MS. Currently, the method enables duplex quantitation and is expandable to at least 6-plex analysis.


Assuntos
Ácidos/análise , Amidas/química , Compostos Orgânicos/análise , Cromatografia Gasosa-Espectrometria de Massas
13.
Anal Chem ; 85(5): 2825-32, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23350991

RESUMO

Label-free quantification is a powerful tool for the measurement of protein abundances by mass spectrometric methods. To maximize quantifiable identifications, MS(1)-based methods must balance the collection of survey scans and fragmentation spectra while maintaining reproducible extracted ion chromatograms (XIC). Here we present a method which increases the depth of proteome coverage over replicate data-dependent experiments without the requirement of additional instrument time or sample prefractionation. Sampling depth is increased by restricting precursor selection to a fraction of the full MS(1) mass range for each replicate; collectively, the m/z segments of all replicates encompass the full MS(1) range. Although selection windows are narrowed, full MS(1) spectra are obtained throughout the method, enabling the collection of full mass range MS(1) chromatograms such that label-free quantitation can be performed for any peptide in any experiment. We term this approach "binning" or "tiling" depending on the type of m/z window utilized. By combining the data obtained from each segment, we find that this approach increases the number of quantifiable yeast peptides and proteins by 31% and 52%, respectively, when compared to normal data-dependent experiments performed in replicate.


Assuntos
Espectrometria de Massas/métodos , Peptídeos/análise , Peptídeos/química , Precursores de Proteínas/química , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/química
14.
Cell Syst ; 6(6): 709-721.e6, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29909275

RESUMO

The genetic regulation and physiological impact of most lipid species are unexplored. Here, we profiled 129 plasma lipid species across 49 strains of the BXD mouse genetic reference population fed either chow or a high-fat diet. By integrating these data with genomics and phenomics datasets, we elucidated genes by environment (diet) interactions that regulate systemic metabolism. We found quantitative trait loci (QTLs) for ∼94% of the lipids measured. Several QTLs harbored genes associated with blood lipid levels and abnormal lipid metabolism in human genome-wide association studies. Lipid species from different classes provided signatures of metabolic health, including seven plasma triglyceride species that associated with either healthy or fatty liver. This observation was further validated in an independent mouse model of non-alcoholic fatty liver disease (NAFLD) and in plasma from NAFLD patients. This work provides a resource to identify plausible genes regulating the measured lipid species and their association with metabolic traits.


Assuntos
Metabolismo dos Lipídeos/genética , Metabolismo dos Lipídeos/fisiologia , Lipídeos/genética , Adulto , Animais , Estudos de Coortes , Dieta Hiperlipídica , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , Lipídeos/sangue , Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/genética , Estudos Prospectivos , Locos de Características Quantitativas , Triglicerídeos/metabolismo
15.
Cell Syst ; 6(6): 722-733.e6, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29909277

RESUMO

The genetics of individual lipid species and their relevance in disease is largely unresolved. We profiled a subset of storage, signaling, membrane, and mitochondrial liver lipids across 385 mice from 47 strains of the BXD mouse population fed chow or high-fat diet and integrated these data with complementary multi-omics datasets. We identified several lipid species and lipid clusters with specific phenotypic and molecular signatures and, in particular, cardiolipin species with signatures of healthy and fatty liver. Genetic analyses revealed quantitative trait loci for 68% of the lipids (lQTL). By multi-layered omics analyses, we show the reliability of lQTLs to uncover candidate genes that can regulate the levels of lipid species. Additionally, we identified lQTLs that mapped to genes associated with abnormal lipid metabolism in human GWASs. This work provides a foundation and resource for understanding the genetic regulation and physiological significance of lipid species.


Assuntos
Lipídeos/genética , Fígado/química , Fígado/metabolismo , Animais , Dieta Hiperlipídica , Feminino , Regulação da Expressão Gênica/genética , Estudo de Associação Genômica Ampla/métodos , Metabolismo dos Lipídeos/fisiologia , Lipídeos/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Hepatopatia Gordurosa não Alcoólica/genética , Fenótipo , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Análise de Sistemas
16.
Cell Rep ; 18(2): 307-313, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28076776

RESUMO

Proper maintenance of mitochondrial activity is essential for metabolic homeostasis. Widespread phosphorylation of mitochondrial proteins may be an important element of this process; yet, little is known about which enzymes control mitochondrial phosphorylation or which phosphosites have functional impact. We investigate these issues by disrupting Ptc7p, a conserved but largely uncharacterized mitochondrial matrix PP2C-type phosphatase. Loss of Ptc7p causes respiratory growth defects concomitant with elevated phosphorylation of select matrix proteins. Among these, Δptc7 yeast exhibit an increase in phosphorylation of Cit1p, the canonical citrate synthase of the tricarboxylic acid (TCA) cycle, that diminishes its activity. We find that phosphorylation of S462 can eliminate Cit1p enzymatic activity likely by disrupting its proper dimerization, and that Ptc7p-driven dephosphorylation rescues Cit1p activity. Collectively, our work connects Ptc7p to an essential TCA cycle function and to additional phosphorylation events that may affect mitochondrial activity inadvertently or in a regulatory manner.


Assuntos
Proteínas Mitocondriais/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Fosfoproteínas/metabolismo , Fosforilação , Fosfosserina/metabolismo , Multimerização Proteica , Proteômica , Especificidade por Substrato
17.
Nat Biotechnol ; 34(11): 1191-1197, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27669165

RESUMO

Mitochondrial dysfunction is associated with many human diseases, including cancer and neurodegeneration, that are often linked to proteins and pathways that are not well-characterized. To begin defining the functions of such poorly characterized proteins, we used mass spectrometry to map the proteomes, lipidomes, and metabolomes of 174 yeast strains, each lacking a single gene related to mitochondrial biology. 144 of these genes have human homologs, 60 of which are associated with disease and 39 of which are uncharacterized. We present a multi-omic data analysis and visualization tool that we use to find covariance networks that can predict molecular functions, correlations between profiles of related gene deletions, gene-specific perturbations that reflect protein functions, and a global respiration deficiency response. Using this multi-omic approach, we link seven proteins including Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases. This Resource should provide molecular insights into mitochondrial protein functions.


Assuntos
Perfilação da Expressão Gênica/métodos , Espectrometria de Massas , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Células Cultivadas , Humanos , Metaboloma/fisiologia , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Mapeamento de Peptídeos , Proteoma/genética , Transdução de Sinais
18.
Nat Protoc ; 10(5): 701-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25855955

RESUMO

Recent advances in chromatography and mass spectrometry (MS) have made rapid and deep proteomic profiling possible. To maximize the performance of the recently produced Orbitrap hybrid mass spectrometer, we have developed a protocol that combines improved sample preparation (including optimized cellular lysis by extensive bead beating) and chromatographic conditions (specifically, 30-cm capillary columns packed with 1.7-µm bridged ethylene hybrid material) and the manufacture of a column heater (to accommodate flow rates of 350-375 nl/min) that increases the number of proteins identified across a single liquid chromatography-tandem MS (LC-MS/MS) separation, thereby reducing the need for extensive sample fractionation. This strategy allowed the identification of up to 4,002 proteins (at a 1% false discovery rate (FDR)) in yeast (Saccharomyces cerevisiae strain BY4741) over 70 min of LC-MS/MS analysis. Quintuplicate analysis of technical replicates reveals 83% overlap at the protein level, thus demonstrating the reproducibility of this procedure. This protocol, which includes cell lysis, overnight tryptic digestion, sample analysis and database searching, takes ∼24 h to complete. Aspects of this protocol, including chromatographic separation and instrument parameters, can be adapted for the optimal analysis of other organisms.


Assuntos
Cromatografia Líquida/métodos , Proteoma/análise , Proteômica/métodos , Proteínas de Saccharomyces cerevisiae/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida/instrumentação , Desenho de Equipamento , Proteômica/instrumentação , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espectrometria de Massas em Tandem/instrumentação
19.
J Am Soc Mass Spectrom ; 25(1): 6-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24178922

RESUMO

We describe a chemical tag for duplex proteome quantification using neutron encoding (NeuCode). The method utilizes the straightforward, efficient, and inexpensive carbamylation reaction. We demonstrate the utility of NeuCode carbamylation by accurately measuring quantitative ratios from tagged yeast lysates mixed in known ratios and by applying this method to quantify differential protein expression in mice fed a either control or high-fat diet.


Assuntos
Marcação por Isótopo/métodos , Nêutrons , Proteínas/análise , Proteômica/métodos , Animais , Dieta Hiperlipídica , Espectrometria de Massas , Camundongos , Proteínas/química , Proteoma/análise , Proteoma/metabolismo
20.
Front Microbiol ; 5: 402, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177315

RESUMO

Efficient microbial conversion of lignocellulosic hydrolysates to biofuels is a key barrier to the economically viable deployment of lignocellulosic biofuels. A chief contributor to this barrier is the impact on microbial processes and energy metabolism of lignocellulose-derived inhibitors, including phenolic carboxylates, phenolic amides (for ammonia-pretreated biomass), phenolic aldehydes, and furfurals. To understand the bacterial pathways induced by inhibitors present in ammonia-pretreated biomass hydrolysates, which are less well studied than acid-pretreated biomass hydrolysates, we developed and exploited synthetic mimics of ammonia-pretreated corn stover hydrolysate (ACSH). To determine regulatory responses to the inhibitors normally present in ACSH, we measured transcript and protein levels in an Escherichia coli ethanologen using RNA-seq and quantitative proteomics during fermentation to ethanol of synthetic hydrolysates containing or lacking the inhibitors. Our study identified four major regulators mediating these responses, the MarA/SoxS/Rob network, AaeR, FrmR, and YqhC. Induction of these regulons was correlated with a reduced rate of ethanol production, buildup of pyruvate, depletion of ATP and NAD(P)H, and an inhibition of xylose conversion. The aromatic aldehyde inhibitor 5-hydroxymethylfurfural appeared to be reduced to its alcohol form by the ethanologen during fermentation, whereas phenolic acid and amide inhibitors were not metabolized. Together, our findings establish that the major regulatory responses to lignocellulose-derived inhibitors are mediated by transcriptional rather than translational regulators, suggest that energy consumed for inhibitor efflux and detoxification may limit biofuel production, and identify a network of regulators for future synthetic biology efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA