Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(11): 6234-6252, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38647066

RESUMO

Chromatin architecture regulates gene expression and shapes cellular identity, particularly in neuronal cells. Specifically, polycomb group (PcG) proteins enable establishment and maintenance of neuronal cell type by reorganizing chromatin into repressive domains that limit the expression of fate-determining genes and sustain distinct gene expression patterns in neurons. Here, we map the 3D genome architecture in neuronal and non-neuronal cells isolated from the Wernicke's area of four human brains and comprehensively analyze neuron-specific aspects of chromatin organization. We find that genome segregation into active and inactive compartments is greatly reduced in neurons compared to other brain cells. Furthermore, neuronal Hi-C maps reveal strong long-range interactions, forming a specific network of PcG-mediated contacts in neurons that is nearly absent in other brain cells. These interacting loci contain developmental transcription factors with repressed expression in neurons and other mature brain cells. But only in neurons, they are rich in bivalent promoters occupied by H3K4me3 histone modification together with H3K27me3, which points to a possible functional role of PcG contacts in neurons. Importantly, other layers of chromatin organization also exhibit a distinct structure in neurons, characterized by an increase in short-range interactions and a decrease in long-range ones.


Assuntos
Cromatina , Genoma Humano , Proteínas do Grupo Polycomb , Humanos , Encéfalo/metabolismo , Encéfalo/citologia , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Neurônios/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Proteínas do Grupo Polycomb/genética , Regiões Promotoras Genéticas
2.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36759336

RESUMO

The chromatin interaction assays, particularly Hi-C, enable detailed studies of genome architecture in multiple organisms and model systems, resulting in a deeper understanding of gene expression regulation mechanisms mediated by epigenetics. However, the analysis and interpretation of Hi-C data remain challenging due to technical biases, limiting direct comparisons of datasets obtained in different experiments and laboratories. As a result, removing biases from Hi-C-generated chromatin contact matrices is a critical data analysis step. Our novel approach, HiConfidence, eliminates biases from the Hi-C data by weighing chromatin contacts according to their consistency between replicates so that low-quality replicates do not substantially influence the result. The algorithm is effective for the analysis of global changes in chromatin structures such as compartments and topologically associating domains. We apply the HiConfidence approach to several Hi-C datasets with significant technical biases, that could not be analyzed effectively using existing methods, and obtain meaningful biological conclusions. In particular, HiConfidence aids in the study of how changes in histone acetylation pattern affect chromatin organization in Drosophila melanogaster S2 cells. The method is freely available at GitHub: https://github.com/victorykobets/HiConfidence.


Assuntos
Drosophila melanogaster , Genoma , Animais , Drosophila melanogaster/genética , Cromatina/genética , Cromossomos , Viés
3.
Semin Cell Dev Biol ; 121: 143-152, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34030950

RESUMO

For decades, biochemical methods for the analysis of genome structure and function provided cell-population-averaged data that allowed general principles and tendencies to be disclosed. Microscopy-based studies, which immanently involve single-cell analysis, did not provide sufficient spatial resolution to investigate the particularly small details of 3D genome folding. Nevertheless, these studies demonstrated that mutual positions of chromosome territories within cell nuclei and individual genomic loci within chromosomal territories can vary significantly in individual cells. The development of new technologies in biochemistry and the advent of super-resolution microscopy in the last decade have made possible the full-scale study of 3D genome organization in individual cells. Maps of the 3D genome build based on C-data and super-resolution microscopy are highly consistent and, therefore, biologically relevant. The internal structures of individual chromosomes, loci, and topologically associating domains (TADs) are resolved as well as cell-cycle dynamics. 3D modeling allows one to investigate the physical mechanisms underlying genome folding. Finally, joint profiling of genome topology and epigenetic features will allow 3D genomics to handle complex cell-to-cell heterogeneity. In this review, we summarize the present state of studies into 3D genome organization in individual cells, analyze the technical problems of single-cell studies, and outline perspectives of 3D genomics.


Assuntos
Genômica/métodos , Análise de Célula Única/métodos , Humanos
4.
Mol Ther ; 31(4): 924-933, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36755493

RESUMO

The human genome is folded into a multi-level 3D structure that controls many nuclear functions including gene expression. Recently, alterations in 3D genome organization were associated with several genetic diseases and cancer. As a consequence, experimental approaches are now being developed to modify the global 3D genome organization and that of specific loci. Here, we discuss emerging experimental approaches of 3D genome editing that may prove useful in biomedicine.


Assuntos
Edição de Genes , Neoplasias , Humanos , Genoma Humano , Núcleo Celular , Neoplasias/genética , Neoplasias/terapia , Sistemas CRISPR-Cas
5.
Nucleic Acids Res ; 50(8): 4389-4413, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35474385

RESUMO

Imbalance in the finely orchestrated system of chromatin-modifying enzymes is a hallmark of many pathologies such as cancers, since causing the affection of the epigenome and transcriptional reprogramming. Here, we demonstrate that a loss-of-function mutation (LOF) of the major histone lysine methyltransferase SETDB1 possessing oncogenic activity in lung cancer cells leads to broad changes in the overall architecture and mechanical properties of the nucleus through genome-wide redistribution of heterochromatin, which perturbs chromatin spatial compartmentalization. Together with the enforced activation of the epithelial expression program, cytoskeleton remodeling, reduced proliferation rate and restricted cellular migration, this leads to the reversed oncogenic potential of lung adenocarcinoma cells. These results emphasize an essential role of chromatin architecture in the determination of oncogenic programs and illustrate a relationship between gene expression, epigenome, 3D genome and nuclear mechanics.


Assuntos
Cromatina , Neoplasias Pulmonares , Humanos , Cromatina/genética , Epigenoma , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Heterocromatina , Fenótipo , Neoplasias Pulmonares/genética
6.
Nucleic Acids Res ; 50(6): 3203-3225, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35166842

RESUMO

Eukaryotic chromosomes are spatially segregated into topologically associating domains (TADs). Some TADs are attached to the nuclear lamina (NL) through lamina-associated domains (LADs). Here, we identified LADs and TADs at two stages of Drosophila spermatogenesis - in bamΔ86 mutant testes which is the commonly used model of spermatogonia (SpG) and in larval testes mainly filled with spermatocytes (SpCs). We found that initiation of SpC-specific transcription correlates with promoters' detachment from the NL and with local spatial insulation of adjacent regions. However, this insulation does not result in the partitioning of inactive TADs into sub-TADs. We also revealed an increased contact frequency between SpC-specific genes in SpCs implying their de novo gathering into transcription factories. In addition, we uncovered the specific X chromosome organization in the male germline. In SpG and SpCs, a single X chromosome is stronger associated with the NL than autosomes. Nevertheless, active chromatin regions in the X chromosome interact with each other more frequently than in autosomes. Moreover, despite the absence of dosage compensation complex in the male germline, randomly inserted SpG-specific reporter is expressed higher in the X chromosome than in autosomes, thus evidencing that non-canonical dosage compensation operates in SpG.


Assuntos
Cromatina , Drosophila , Animais , Diferenciação Celular/genética , Cromatina/genética , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Células Germinativas , Masculino
7.
Food Microbiol ; 121: 104520, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637082

RESUMO

Sequence-based analysis of fermented foods and beverages' microbiomes offers insights into their impact on taste and consumer health. High-throughput metagenomics provide detailed taxonomic and functional community profiling, but bacterial and yeast genome reconstruction and mobile genetic elements tracking are to be improved. We established a pipeline for exploring fermented foods microbiomes using metagenomics coupled with chromosome conformation capture (Hi-C metagenomics). The approach was applied to analyze a collection of spontaneously fermented beers and ciders (n = 12). The Hi-C reads were used to reconstruct the metagenome-assembled genomes (MAGs) of bacteria and yeasts facilitating subsequent comparative genomic analysis, assembly scaffolding and exploration of "plasmid-bacteria" links. For a subset of beverages, yeasts were isolated and characterized phenotypically. The reconstructed Hi-C MAGs primarily belonged to the Lactobacillaceae family in beers, along with Acetobacteraceae and Enterobacteriaceae in ciders, exhibiting improved quality compared to conventional metagenomic MAGs. Comparative genomic analysis of Lactobacillaceae Hi-C MAGs revealed clustering by niche and suggested genetic determinants of survival and probiotic potential. For Pediococcus damnosus, Hi-C-based networks of contigs enabled linking bacteria with plasmids. Analyzing phylogeny and accessory genes in the context of known reference genomes offered insights into the niche specialization of beer lactobacilli. The subspecies-level diversity of cider Tatumella spp. was disentangled using a Hi-C-based graph. We obtained highly complete yeast Hi-C MAGs primarily represented by Brettanomyces and Saccharomyces, with Hi-C-facilitated chromosome-level genome assembly for the former. Utilizing Hi-C metagenomics to unravel the genomic content of individual species can provide a deeper understanding of the ecological interactions within the food microbiome, aid in bioprospecting beneficial microorganisms, improving quality control and improving innovative fermented products.


Assuntos
Saccharomyces cerevisiae , Saccharomyces , Saccharomyces cerevisiae/genética , Cerveja/microbiologia , Bactérias/genética , Plasmídeos , Saccharomyces/genética , Metagenoma , Metagenômica , Enterobacteriaceae/genética
8.
Nature ; 544(7648): 110-114, 2017 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-28355183

RESUMO

Chromatin is reprogrammed after fertilization to produce a totipotent zygote with the potential to generate a new organism. The maternal genome inherited from the oocyte and the paternal genome provided by sperm coexist as separate haploid nuclei in the zygote. How these two epigenetically distinct genomes are spatially organized is poorly understood. Existing chromosome conformation capture-based methods are not applicable to oocytes and zygotes owing to a paucity of material. To study three-dimensional chromatin organization in rare cell types, we developed a single-nucleus Hi-C (high-resolution chromosome conformation capture) protocol that provides greater than tenfold more contacts per cell than the previous method. Here we show that chromatin architecture is uniquely reorganized during the oocyte-to-zygote transition in mice and is distinct in paternal and maternal nuclei within single-cell zygotes. Features of genomic organization including compartments, topologically associating domains (TADs) and loops are present in individual oocytes when averaged over the genome, but the presence of each feature at a locus varies between cells. At the sub-megabase level, we observed stochastic clusters of contacts that can occur across TAD boundaries but average into TADs. Notably, we found that TADs and loops, but not compartments, are present in zygotic maternal chromatin, suggesting that these are generated by different mechanisms. Our results demonstrate that the global chromatin organization of zygote nuclei is fundamentally different from that of other interphase cells. An understanding of this zygotic chromatin 'ground state' could potentially provide insights into reprogramming cells to a state of totipotency.


Assuntos
Núcleo Celular/metabolismo , Cromatina/metabolismo , Posicionamento Cromossômico , Oócitos/citologia , Análise de Célula Única/métodos , Zigoto/citologia , Animais , Núcleo Celular/genética , Transdiferenciação Celular , Reprogramação Celular , Cromatina/química , Cromatina/genética , Feminino , Haploidia , Interfase , Herança Materna/genética , Camundongos , Conformação de Ácido Nucleico , Oócitos/metabolismo , Herança Paterna/genética , Processos Estocásticos , Células-Tronco Totipotentes/citologia , Células-Tronco Totipotentes/metabolismo , Zigoto/metabolismo
9.
Nucleic Acids Res ; 49(18): 10524-10541, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-33836078

RESUMO

Liquid-liquid phase separation (LLPS) contributes to the spatial and functional segregation of molecular processes within the cell nucleus. However, the role played by LLPS in chromatin folding in living cells remains unclear. Here, using stochastic optical reconstruction microscopy (STORM) and Hi-C techniques, we studied the effects of 1,6-hexanediol (1,6-HD)-mediated LLPS disruption/modulation on higher-order chromatin organization in living cells. We found that 1,6-HD treatment caused the enlargement of nucleosome clutches and their more uniform distribution in the nuclear space. At a megabase-scale, chromatin underwent moderate but irreversible perturbations that resulted in the partial mixing of A and B compartments. The removal of 1,6-HD from the culture medium did not allow chromatin to acquire initial configurations, and resulted in more compact repressed chromatin than in untreated cells. 1,6-HD treatment also weakened enhancer-promoter interactions and TAD insulation but did not considerably affect CTCF-dependent loops. Our results suggest that 1,6-HD-sensitive LLPS plays a limited role in chromatin spatial organization by constraining its folding patterns and facilitating compartmentalization at different levels.


Assuntos
Cromatina/química , Glicóis/farmacologia , Cromatina/efeitos dos fármacos , Elementos Facilitadores Genéticos/efeitos dos fármacos , Genoma Humano , Células HeLa , Humanos , Microscopia , Regiões Promotoras Genéticas/efeitos dos fármacos
10.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982676

RESUMO

Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.


Assuntos
Células Epiteliais , Queratinas , Queratinas/genética , Queratinas/metabolismo , Epitélio/metabolismo , Células Epiteliais/metabolismo , Citoesqueleto/metabolismo , Expressão Gênica
11.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003233

RESUMO

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization.


Assuntos
Núcleo Celular , Trissomia , Recém-Nascido , Humanos , Trissomia/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Testes Genéticos , Síndrome da Trissomia do Cromossomo 13/genética
12.
BMC Bioinformatics ; 23(1): 116, 2022 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-35366792

RESUMO

BACKGROUND: Understanding the role of various factors in 3D genome organization is essential to determine their impact on shaping large-scale chromatin units such as euchromatin (A) and heterochromatin (B) compartments. At this level, chromatin compaction is extensively modulated when transcription and epigenetic profiles change upon cell differentiation and response to various external impacts. However, detailed analysis of chromatin contact patterns within and between compartments is complicated because of a lack of suitable computational methods. RESULTS: We developed a tool, Pentad, to perform calculation, visualisation and quantitative analysis of the average chromatin compartment from the Hi-C matrices in cis, trans, and specified genomic distances. As we demonstrated by applying Pentad to publicly available Hi-C datasets, it helps to reliably detect redistribution of contact frequency in the chromatin compartments and assess alterations in the compartment strength. CONCLUSIONS: Pentad is a simple tool for the analysis of changes in chromatin compartmentalization in various biological conditions. Pentad is freely available at https://github.com/magnitov/pentad .


Assuntos
Cromatina , Cromossomos , Genoma , Genômica/métodos
13.
PLoS Comput Biol ; 17(11): e1009546, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34793453

RESUMO

Construction of chromosomes 3D models based on single cell Hi-C data constitute an important challenge. We present a reconstruction approach, DPDchrom, that incorporates basic knowledge whether the reconstructed conformation should be coil-like or globular and spring relaxation at contact sites. In contrast to previously published protocols, DPDchrom can naturally form globular conformation due to the presence of explicit solvent. Benchmarking of this and several other methods on artificial polymer models reveals similar reconstruction accuracy at high contact density and DPDchrom advantage at low contact density. To compare 3D structures insensitively to spatial orientation and scale, we propose the Modified Jaccard Index. We analyzed two sources of the contact dropout: contact radius change and random contact sampling. We found that the reconstruction accuracy exponentially depends on the number of contacts per genomic bin allowing to estimate the reconstruction accuracy in advance. We applied DPDchrom to model chromosome configurations based on single-cell Hi-C data of mouse oocytes and found that these configurations differ significantly from a random one, that is consistent with other studies.


Assuntos
Cromatina/química , Análise de Célula Única/métodos , Algoritmos , Animais , Camundongos , Conformação Proteica
14.
Biochemistry (Mosc) ; 87(9): 1035-1049, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36180994

RESUMO

The review is devoted to the patterns of evolution of α- and ß-globin gene domains. A hypothesis is presented according to which segregation of the ancestral cluster of α/ß-globin genes in Amniota occurred due to the performance by α-globins and ß-globins of non-canonical functions not related to oxygen transport.


Assuntos
Evolução Molecular , Globinas beta , Animais , Globinas/genética , Família Multigênica , Oxigênio , Filogenia , Vertebrados/genética , alfa-Globinas/genética , Globinas beta/genética
15.
Nucleic Acids Res ; 48(12): 6699-6714, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479626

RESUMO

Non-coding RNAs (ncRNAs) participate in various biological processes, including regulating transcription and sustaining genome 3D organization. Here, we present a method termed Red-C that exploits proximity ligation to identify contacts with the genome for all RNA molecules present in the nucleus. Using Red-C, we uncovered the RNA-DNA interactome of human K562 cells and identified hundreds of ncRNAs enriched in active or repressed chromatin, including previously undescribed RNAs. Analysis of the RNA-DNA interactome also allowed us to trace the kinetics of messenger RNA production. Our data support the model of co-transcriptional intron splicing, but not the hypothesis of the circularization of actively transcribed genes.


Assuntos
Cromatina/genética , DNA/genética , Genoma/genética , RNA não Traduzido/genética , Transcrição Gênica , Núcleo Celular/genética , Humanos , RNA Mensageiro/genética , RNA não Traduzido/isolamento & purificação , Fatores de Transcrição/genética
16.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142884

RESUMO

Dosage compensation equalizes gene expression in a single male X chromosome with that in the pairs of autosomes and female X chromosomes. In the fruit fly Drosophila, canonical dosage compensation is implemented by the male-specific lethal (MSL) complex functioning in all male somatic cells. This complex contains acetyl transferase males absent on the first (MOF), which performs H4K16 hyperacetylation specifically in the male X chromosome, thus facilitating transcription of the X-linked genes. However, accumulating evidence points to an existence of additional, non-canonical dosage compensation mechanisms operating in somatic and germline cells. In this review, we discuss current advances in the understanding of both canonical and non-canonical mechanisms of dosage compensation in Drosophila.


Assuntos
Proteínas de Drosophila , Drosophila , Acetiltransferases/genética , Animais , Mecanismo Genético de Compensação de Dose , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Proteínas Nucleares/genética , Cromossomo X/genética
17.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36077220

RESUMO

Topoisomerase inhibitors are widely used in cancer chemotherapy. However, one of the potential long-term adverse effects of such therapy is acute leukemia. A key feature of such therapy-induced acute myeloid leukemia (t-AML) is recurrent chromosomal translocations involving AML1 (RUNX1) or MLL (KMT2A) genes. The formation of chromosomal translocation depends on the spatial proximity of translocation partners and the mobility of the DNA ends. It is unclear which of these two factors might be decisive for recurrent t-AML translocations. Here, we used fluorescence in situ hybridization (FISH) and chromosome conformation capture followed by sequencing (4C-seq) to investigate double-strand DNA break formation and the mobility of broken ends upon etoposide treatment, as well as contacts between translocation partner genes. We detected the separation of the parts of the broken AML1 gene, as well as the increased mobility of these separated parts. 4C-seq analysis showed no evident contacts of AML1 and MLL with loci, implicated in recurrent t-AML translocations, either before or after etoposide treatment. We suggest that separation of the break ends and their increased non-targeted mobility-but not spatial predisposition of the rearrangement partners-plays a major role in the formation of these translocations.


Assuntos
Leucemia Mieloide Aguda , Translocação Genética , DNA , Quebras de DNA de Cadeia Dupla , Etoposídeo/efeitos adversos , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/genética , Inibidores da Topoisomerase II/efeitos adversos
18.
Bioinformatics ; 36(17): 4560-4567, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492116

RESUMO

MOTIVATION: The application of genome-wide chromosome conformation capture (3C) methods to prokaryotes provided insights into the spatial organization of their genomes and identified patterns conserved across the tree of life, such as chromatin compartments and contact domains. Prokaryotic genomes vary in GC content and the density of restriction sites along the chromosome, suggesting that these properties should be considered when planning experiments and choosing appropriate software for data processing. Diverse algorithms are available for the analysis of eukaryotic chromatin contact maps, but their potential application to prokaryotic data has not yet been evaluated. RESULTS: Here, we present a comparative analysis of domain calling algorithms using available single-microbe experimental data. We evaluated the algorithms' intra-dataset reproducibility, concordance with other tools and sensitivity to coverage and resolution of contact maps. Using RNA-seq as an example, we showed how orthogonal biological data can be utilized to validate the reliability and significance of annotated domains. We also suggest that in silico simulations of contact maps can be used to choose optimal restriction enzymes and estimate theoretical map resolutions before the experiment. Our results provide guidelines for researchers investigating microbes and microbial communities using high-throughput 3C assays such as Hi-C and 3C-seq. AVAILABILITY AND IMPLEMENTATION: The code of the analysis is available at https://github.com/magnitov/prokaryotic_cids. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Benchmarking , Software , Algoritmos , Cromossomos , Genoma , Reprodutibilidade dos Testes
19.
Methods ; 170: 48-60, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31252062

RESUMO

Studies performed using Hi-C and other high-throughput whole-genome C-methods have demonstrated that 3D organization of eukaryotic genomes is functionally relevant. Unfortunately, ultra-deep sequencing of Hi-C libraries necessary to detect loop structures in large vertebrate genomes remains rather expensive. However, many studies are in fact aimed at determining the fine-scale 3D structure of comparatively small genomic regions up to several Mb in length. Such studies typically focus on the spatial structure of domains of coregulated genes, molecular mechanisms of loop formation, and interrogation of functional significance of GWAS-revealed polymorphisms. Therefore, a handful of molecular techniques based on Hi-C have been developed to address such issues. These techniques commonly rely on in-solution hybridization of Hi-C/3C-seq libraries with pools of biotinylated baits covering the region of interest, followed by deep sequencing of the enriched library. Here, we describe a new protocol of this kind, C-TALE (Chromatin TArget Ligation Enrichment). Preparation of hybridization probes from bacterial artificial chromosomes and an additional round of enrichment make C-TALE a cost-effective alternative to existing many-versus-all C-methods.


Assuntos
Mapeamento Cromossômico/métodos , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Animais , Biotinilação , Linhagem Celular , Cromatina/química , Cromatina/genética , Cromatina/isolamento & purificação , Cromatina/metabolismo , Mapeamento Cromossômico/economia , Cromossomos Artificiais Bacterianos/genética , DNA/genética , DNA/isolamento & purificação , DNA/metabolismo , Biblioteca Gênica , Genômica/economia , Sequenciamento de Nucleotídeos em Larga Escala/economia , Humanos , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico/métodos
20.
J Cell Biochem ; 120(3): 4494-4503, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30260021

RESUMO

Chromosomes in many organisms, including Drosophila and mammals, are folded into topologically associating domains (TADs). Increasing evidence suggests that TAD folding is hierarchical, wherein subdomains combine to form larger superdomains, instead of a sequence of nonoverlapping domains. Here, we studied the hierarchical structure of TADs in Drosophila. We show that the boundaries of TADs of different hierarchical levels are characterized by the presence of different portions of active chromatin, but do not vary in the binding of architectural proteins, such as CCCTC binding factor or cohesin. The apparent hierarchy of TADs in Drosophila chromosomes is not likely to have functional importance but rather reflects various options of long-range chromatin folding directed by the distribution of active and inactive chromatin segments and may represent population average.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Cromatina/metabolismo , Cromossomos de Insetos/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Fator de Ligação a CCCTC/genética , Cromatina/genética , Cromossomos de Insetos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA