Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34930826

RESUMO

In mammals, circadian clocks are strictly suppressed during early embryonic stages, as well as in pluripotent stem cells, by the lack of CLOCK/BMAL1-mediated circadian feedback loops. During ontogenesis, the innate circadian clocks emerge gradually at a late developmental stage, and with these, the circadian temporal order is invested in each cell level throughout a body. Meanwhile, in the early developmental stage, a segmented body plan is essential for an intact developmental process, and somitogenesis is controlled by another cell-autonomous oscillator, the segmentation clock, in the posterior presomitic mesoderm (PSM). In the present study, focusing upon the interaction between circadian key components and the segmentation clock, we investigated the effect of the CLOCK/BMAL1 on the segmentation clock Hes7 oscillation, revealing that the expression of functional CLOCK/BMAL1 severely interferes with the ultradian rhythm of segmentation clock in induced PSM and gastruloids. RNA sequencing analysis implied that the premature expression of CLOCK/BMAL1 affects the Hes7 transcription and its regulatory pathways. These results suggest that the suppression of CLOCK/BMAL1-mediated transcriptional regulation during the somitogenesis may be inevitable for intact mammalian development.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/metabolismo , Ritmo Circadiano , Embrião de Mamíferos/metabolismo , Organoides/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Redes Reguladoras de Genes , Mesoderma/metabolismo , Camundongos , Proteínas Circadianas Period/genética , Somitos/crescimento & desenvolvimento , Somitos/metabolismo
2.
Proc Natl Acad Sci U S A ; 114(36): E7479-E7488, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827343

RESUMO

Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the posttranscriptional regulation of Clock subsequent to the cellular differentiation for the emergence of circadian clock oscillation in mouse fetal hearts and mouse embryonic stem cells (ESCs). In mouse fetal hearts, no apparent oscillation of cell-autonomous molecular clock was detectable around E10, whereas oscillation was clearly visible in E18 hearts. Temporal RNA-sequencing analysis using mouse fetal hearts reveals many fewer rhythmic genes in E10-12 hearts (63, no core circadian genes) than in E17-19 hearts (483 genes), suggesting the lack of functional circadian transcriptional/translational feedback loops (TTFLs) of core circadian genes in E10 mouse fetal hearts. In both ESCs and E10 embryos, CLOCK protein was absent despite the expression of Clock mRNA, which we showed was due to Dicer/Dgcr8-dependent translational suppression of CLOCK. The CLOCK protein is required for the discernible molecular oscillation in differentiated cells, and the posttranscriptional regulation of Clock plays a role in setting the timing for the emergence of the circadian clock oscillation during mammalian development.


Assuntos
Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Circadianas Period/genética , Processamento de Proteína Pós-Traducional/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Camundongos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
3.
Int J Urol ; 27(6): 518-524, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32223039

RESUMO

The circadian clock controls and adapts diverse physiological and behavioral processes according to Earth's 24-h cycle of environmental changes. The master pacemaker of the mammalian circadian clock resides in the hypothalamic suprachiasmatic nucleus, but almost all cells throughout the body show circadian oscillations in gene expression patterns and associated functions. Recent studies have shown that the circadian clock gradually develops during embryogenesis. Embryonic stem cells and induced pluripotent stem cells do not show circadian oscillations of gene expression, but gradually develop circadian clock oscillation during differentiation; thus, the developmental program of circadian clock emergence appears closely associated with cellular differentiation. Like embryonic stem cells, certain cancer cell types also lack the circadian clock. Given this similarity between embryonic stem cells and cancer cells, interest is growing in the contributions of circadian clock dysfunction to dedifferentiation and cancer development. In this review, we summarize recent advances in our understanding of circadian clock emergence during ontogenesis, and discuss possible associations with cellular differentiation and carcinogenesis. Considering the multiple physiological functions of circadian rhythms, circadian abnormalities might contribute to a host of diseases, including cancer. Insights on circadian function could lead to the identification of biomarkers for cancer diagnosis and prognosis, as well as novel targets for treatment.


Assuntos
Relógios Circadianos , Neoplasias , Animais , Diferenciação Celular , Ritmo Circadiano , Expressão Gênica , Neoplasias/genética
4.
Genes Cells ; 23(2): 60-69, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29271044

RESUMO

The circadian clock, which regulates cellular physiology, such as energy metabolism, resides in each cell level throughout the body. Recently, it has been elucidated that the cellular circadian clock is closely linked with cellular differentiation. Moreover, the misregulation of cellular differentiation in mouse embryonic stem cells (ESCs) induced abnormally differentiated cells with impaired circadian clock oscillation, concomitant with the post-transcriptional suppression of CLOCK proteins. Here, we show that the circadian molecular oscillation is disrupted in dysdifferentiation-mediated mouse kidney tumors induced by partial in vivo reprogramming, resembling Wilms tumors. The expression of CLOCK protein was dramatically reduced in the tumor cells despite the Clock mRNA expression. We also showed that a similar loss of CLOCK was observed in human Wilms tumors, suggesting that the circadian molecular clockwork may be disrupted in dysdifferentiation-mediated embryonal tumors such as Wilms tumors, similar to the in vivo reprogramming-induced mouse kidney tumors. These results support our previous reports and may provide a novel viewpoint for understanding the pathophysiological nature of cancers through the correlation between cellular differentiation and circadian clock.


Assuntos
Diferenciação Celular , Relógios Circadianos , Ritmo Circadiano , Regulação da Expressão Gênica , Neoplasias Renais/patologia , Tumor de Wilms/patologia , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Células Cultivadas , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Embrionárias Murinas/patologia , Transcriptoma , Tumor de Wilms/genética , Tumor de Wilms/metabolismo
5.
Pediatr Surg Int ; 35(12): 1403-1411, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31555858

RESUMO

PURPOSE: We investigated how local tumor resection affects metastatic lesions in neuroblastoma. METHODS: MYCN Tg tumor-derived cells were injected subcutaneously into 129+Ter/SvJcl wild-type mice. First, the frequency of metastasis-bearing mice was investigated immunohistochemically (metastatic ratio) at endpoint or post-injection day (PID) 90. Second, the threshold volume of local tumor in mice bearing microscopic lymph node metastasis (mLNM) was investigated at PID 30. Finally, local tumors were resected after exceeding the threshold. Mice were divided into local tumor resection (Resection) and observation (Observation) groups, and the metastatic ratio and volume of LNM were compared between the groups at endpoint or PID 74. RESULTS: The metastatic ratio without local resection was 88% at PID 78-90. The threshold local tumor volume in the mice with mLNM was 745 mm3 at PID 30, so local tumors were resected after exceeding 700 mm3. The metastatic ratio and LNM volume were significantly greater in the Resection group (n = 16) than in the Observation group (n = 16) (94% vs. 38%, p < 0.001; 2092 ± 2310 vs. 275 ± 218 mm3, p < 0.01; respectively) at PID 50-74. CONCLUSION: Local tumor resection might augment the growth of synchronous microscopic metastases. Our results provide insights into the appropriate timing of local resection for high-risk neuroblastoma.


Assuntos
Neoplasias da Medula Óssea/secundário , Neoplasias Pulmonares/secundário , Metástase Linfática , Segunda Neoplasia Primária/patologia , Neuroblastoma/patologia , Neuroblastoma/cirurgia , Neoplasias Ovarianas/secundário , Aloenxertos , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos
6.
Proc Natl Acad Sci U S A ; 111(47): E5039-48, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25389311

RESUMO

The circadian clock in mammalian cells is cell-autonomously generated during the cellular differentiation process, but the underlying mechanisms are not understood. Here we show that perturbation of the transcriptional program by constitutive expression of transcription factor c-Myc and DNA methyltransferase 1 (Dnmt1) ablation disrupts the differentiation-coupled emergence of the clock from mouse ESCs. Using these model ESCs, 484 genes are identified by global gene expression analysis as factors correlated with differentiation-coupled circadian clock development. Among them, we find the misregulation of Kpna2 (Importin-α2) during the differentiation of the c-Myc-overexpressed and Dnmt1(-/-) ESCs, in which sustained cytoplasmic accumulation of PER proteins is observed. Moreover, constitutive expression of Kpna2 during the differentiation culture of ESCs significantly impairs clock development, and KPNA2 facilitates cytoplasmic localization of PER1/2. These results suggest that the programmed gene expression network regulates the differentiation-coupled circadian clock development in mammalian cells, at least in part via posttranscriptional regulation of clock proteins.


Assuntos
Diferenciação Celular/fisiologia , Relógios Circadianos , Proteínas Nucleares/fisiologia , Transcrição Gênica , Animais , Células-Tronco Embrionárias/citologia , Epigênese Genética , Camundongos , Proteínas Nucleares/genética , alfa Carioferinas
7.
Genes Cells ; 20(12): 992-1005, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26456390

RESUMO

Methyl-CpG-binding protein 2 (Mecp2) is an X-linked gene encoding a methylated DNA-binding nuclear protein which regulates transcriptional activity. The mutation of MECP2 in humans is associated with Rett syndrome (RTT), a neurodevelopmental disorder. Patients with RTT frequently show abnormal sleep patterns and sleep-associated problems, in addition to autistic symptoms, raising the possibility of circadian clock dysfunction in RTT. In this study, we investigated circadian clock function in Mecp2-deficient mice. We successfully generated both male and female Mecp2-deficient mice on the wild-type C57BL/6 background and PER2(Luciferase) (PER2(Luc)) knock-in background using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. Generated Mecp2-deficient mice recapitulated reduced activity in mouse models of RTT, and their activity rhythms were diminished in constant dark conditions. Furthermore, real-time bioluminescence imaging showed that the amplitude of PER2(Luc)-driven circadian oscillation was significantly attenuated in Mecp2-deficient SCN neurons. On the other hand, in vitro circadian rhythm development assay using Mecp2-deficient mouse embryonic stem cells (ESCs) did not show amplitude changes of PER2(Luc) bioluminescence rhythms. Together, these results show that Mecp2 deficiency abrogates the circadian pacemaking ability of the SCN, which may be a therapeutic target to treat the sleep problems of patients with RTT.


Assuntos
Proteína 2 de Ligação a Metil-CpG/genética , Proteínas Circadianas Period/genética , Síndrome de Rett/genética , Síndrome de Rett/fisiopatologia , Núcleo Supraquiasmático/metabolismo , Animais , Sistemas CRISPR-Cas , Diferenciação Celular , Células Cultivadas , Ritmo Circadiano , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas Circadianas Period/metabolismo , Síndrome de Rett/metabolismo
8.
Acta Orthop ; 86(5): 627-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25765847

RESUMO

BACKGROUND AND PURPOSE: The circadian clock governs endogenous day-night variations. In bone, the metabolism and growth show diurnal rhythms. The circadian clock is based on a transcription-translation feedback loop composed of clock genes including Period2 (Per2), which encodes the protein period circadian protein homolog 2. Because plasma parathyroid hormone (PTH) levels show diurnal variation, we hypothesized that PTH could carry the time information to bone and cartilage. In this study, we analyzed the effect of PTH on the circadian clock of the femur. PATIENTS AND METHODS: Per2::Luciferase (Per2::Luc) knock-in mice were used and their femurs were organ-cultured. The bioluminescence was measured using photomultiplier tube-based real-time bioluminescence monitoring equipment or real-time bioluminescence microscopic imaging devices. PTH or its vehicle was administered and the phase shifts were calculated. Immunohistochemistry was performed to detect PTH type 1 receptor (PTH1R) expression. RESULTS: Real-time bioluminescence monitoring revealed that PTH reset the circadian rhythm of the Per2::Luc activity in the femurs in an administration time-dependent and dose-dependent manner. Microscopic bioluminescence imaging revealed that Per2::Luc activity in the growth plate and the articular cartilage showed that the circadian rhythms and their phase shifts were induced by PTH. PTH1R was expressed in the growth plate cartilage. INTERPRETATION: In clinical practice, teriparatide (PTH (1-34)) treatment is widely used for osteoporosis. We found that PTH administration regulated the femoral circadian clock oscillation, particularly in the cartilage. Regulation of the local circadian clock by PTH may lead to a more effective treatment for not only osteoporosis but also endochondral ossification in bone growth and fracture repair.


Assuntos
Cartilagem Articular/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Fêmur/metabolismo , Hormônio Paratireóideo/farmacologia , Proteínas Circadianas Period/efeitos dos fármacos , Animais , Feminino , Masculino , Camundongos
9.
iScience ; 27(2): 108934, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38533453

RESUMO

Pathological consequences of circadian misalignment, such as shift work, show considerable individual differences, but the lack of mechanistic understanding hinders precision prevention to prevent and mitigate disease symptoms. Here, we employed an integrative approach involving physiological, transcriptional, and histological phenotypes to examine inter-individual differences in pre-symptomatic pathological progression, preceding irreversible disease onset, in wild-type mice exposed to chronic jet-lag (CJL). We observed that CJL markedly increased the prevalence of hepatic steatosis with pronounced inter-individual differences. Stratification of individual mice based on CJL-induced hepatic transcriptomic signature, validated by histopathological analysis, pinpoints dysregulation of lipid metabolism. Moreover, the period and power of intrinsic behavioral rhythms were found to significantly correlate with CJL-induced gene signatures. Together, our results suggest circadian rhythm robustness of the animals contributes to inter-individual variations in pathogenesis of circadian misalignment-induced diseases and raise the possibility that these physiological indicators may be available for predictive hallmarks of circadian rhythm disorders.

10.
Invest Ophthalmol Vis Sci ; 63(5): 16, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35579906

RESUMO

Purpose: To investigate circadian clock oscillation and circadian global gene expression in cultured human corneal endothelial cells (cHCECs) to elucidate and assess the potential function of circadian regulation in HCECs. Methods: In this study, we introduced a circadian bioluminescence reporter, Bmal1:luciferase (Bmal1:luc), into cHCECs and subsequently monitored real-time bioluminescence rhythms. RNA-sequencing data analysis was then performed using sequential time-course samples of the cHCECs to obtain a comprehensive understanding of the circadian gene expression rhythms. The potential relevance of rhythmically expressed genes was then assessed by systematic approaches using functional clustering and individual gene annotations. Results: Bmal1:luc bioluminescence exhibited clear circadian oscillation in the cHCECs. The core clock genes and clock-related genes showed high-amplitude robust circadian messenger RNA (mRNA) expression rhythms in cHCECs after treatment with dexamethasone, and 329 genes that exhibited circadian mRNA expression rhythms were identified (i.e., genes involved in various physiological processes including glycolysis, mitochondrial function, antioxidative systems, hypoxic responses, apoptosis, and extracellular matrix regulation, which represent the physiological functions of HCECs). Conclusions: Our findings revealed that cHCECs have a robust and functional circadian clock, and our discovery that a large number of genes exhibit circadian mRNA expression rhythms in cHCECs suggests a potential contribution of circadian regulation to fine-tune HCEC functions for daily changes in the environment.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células Endoteliais/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
11.
J Oral Biosci ; 63(3): 265-270, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34358700

RESUMO

OBJECTIVES: Irreversible morphological regressions of the teeth or related structures in older people can diminish their overall health. However, research on human aging in dentistry is complicated by several confounding factors. In this study, we conducted a morphometric analysis of the mandibular second molars and surrounding alveolar bone in C57BL/6 mice to evaluate age-related changes in the oral cavity. METHODS: The animals were divided into five groups based on their age: 4 weeks (juvenile mice; n = 5); 20 weeks (n = 7), 50 weeks (n = 5), 77 weeks (n = 7), and 100 weeks (n = 5); changes were evaluated using micro-computed tomography. RESULTS: The molars of juvenile mice had sharp and pointed cusps and presented maximum heights. With age and occlusal wear, the cusp heights demonstrated a significant decrease (up to 75%) until the last stage of life. Conversely, apparent lesions were not observed on the basal portion of the crown, even in the most heavily worn teeth. The roots of the molars continued to grow in length at 4 weeks of age. Alveolar bone resorption begins to occur in middle age and continues throughout life. The proportion of vertical bone loss reached approximately 40% of the entire root length, demonstrating a remarkable increase between weeks 77 and 100. CONCLUSIONS: Overall, these morphological changes were similar to those observed in humans. Therefore, it might be appropriate to use aged mice as an experimental model for basic and clinical research in geriatric dentistry.


Assuntos
Perda do Osso Alveolar , Atrito Dentário , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dente Molar/diagnóstico por imagem , Microtomografia por Raio-X
12.
J Mol Biol ; 432(12): 3611-3617, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31931007

RESUMO

The emergence of circadian molecular oscillation is observed as a gradual process during the development in mammals. Pluripotent stem cell differentiation cultures recapitulate this process, whereas reprogramming into an undifferentiated state reverses it. These findings indicate that the circadian clock is tightly coupled to the state of cellular differentiation. The state of the circadian core machinery in nonrhythmic cells may be different from that in rhythmic cells. In this review, we describe the circadian rhythm development during ontogeny in mammals and focus on the molecular mechanisms that suppress circadian molecular oscillations during early development and in pluripotent stem cells. We also discuss the biological implications of repressing cellular circadian oscillation in nonrhythmic cells.


Assuntos
Diferenciação Celular/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Células-Tronco Pluripotentes/citologia , Animais , Humanos , Mamíferos/genética
13.
Sci Rep ; 10(1): 2569, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054990

RESUMO

Modern society characterized by a 24/7 lifestyle leads to misalignment between environmental cycles and endogenous circadian rhythms. Persisting circadian misalignment leads to deleterious effects on health and healthspan. However, the underlying mechanism remains not fully understood. Here, we subjected adult, wild-type mice to distinct chronic jet-lag paradigms, which showed that long-term circadian misalignment induced significant early mortality. Non-biased RNA sequencing analysis using liver and kidney showed marked activation of gene regulatory pathways associated with the immune system and immune disease in both organs. In accordance, we observed enhanced steatohepatitis with infiltration of inflammatory cells. The investigation of senescence-associated immune cell subsets from the spleens and mesenteric lymph nodes revealed an increase in PD-1+CD44high CD4 T cells as well as CD95+GL7+ germinal center B cells, indicating that the long-term circadian misalignment exacerbates immune senescence and consequent chronic inflammation. Our results underscore immune homeostasis as a pivotal interventional target against clock-related disorders.


Assuntos
Senescência Celular/imunologia , Ritmo Circadiano/imunologia , Síndrome do Jet Lag/imunologia , Longevidade/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Senescência Celular/genética , Ritmo Circadiano/genética , Modelos Animais de Doenças , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Inflamação/imunologia , Inflamação/fisiopatologia , Síndrome do Jet Lag/fisiopatologia , Longevidade/genética , Camundongos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Análise de Sequência de RNA , Linfócitos T/imunologia , Linfócitos T/patologia
14.
J Biol Rhythms ; 34(5): 525-532, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31368392

RESUMO

The mammalian circadian clock, which coordinates various physiological functions, develops gradually during ontogeny. Recently, we have reported the posttranscriptional suppression of CLOCK protein expression as a key mechanism of the emergence of the circadian clock during mouse development. However, whether a common mechanism regulates the development of the human circadian clock remains unclear. In the present study, we show that human induced pluripotent stem cells (iPSCs) have no discernible circadian molecular oscillation. In addition, in vitro differentiation culture of human iPSCs required a longer duration than that required in mouse for the emergence of circadian oscillations. The expression of CLOCK protein in undifferentiated human iPSCs was posttranscriptionally suppressed despite the expression of CLOCK mRNA, which is consistent with our previous observations in mouse embryonic stem cells, iPSCs, and early mouse embryos. These results suggest that CLOCK protein expressions could be posttranscriptionally suppressed in the early developmental stage not only in mice but also in humans.


Assuntos
Proteínas CLOCK/genética , Diferenciação Celular , Relógios Circadianos/genética , Ritmo Circadiano , Células-Tronco Pluripotentes Induzidas/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas CLOCK/fisiologia , Células Cultivadas , Relógios Circadianos/fisiologia , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/genética
15.
Acta Histochem Cytochem ; 52(6): 93-99, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-32001947

RESUMO

Rhythmic incremental growth lines occur in dental hard tissues of vertebrates, and dentinogenesis in rodent incisors is suggested to be controlled by the 24-hr circadian clock. Rodent incisors continue to grow throughout the animal's life; however, similar to human teeth, rodent molars stop growing after crown formation. This similarity suggests that the mouse molar is an excellent model to understand the molecular mechanisms underlying growth of human teeth. However, not much is known about the rhythmic dentinogenesis in mouse molars. Here, we investigated the incremental growth lines in mouse molar dentin using tetracycline as the growth marker. The incremental growth lines were observed to be generated at approximately 8-hr intervals in wild-type mice housed under 12:12 hr light-dark conditions. Moreover, the 8-hr rhythmic increments persisted in the wild-type and Bmal1-/- mice housed in constant darkness, where Bmal1-/- mice become behaviorally arrhythmic. These results revealed that the dentinogenesis in mouse molars underlie the ultradian rhythms with around 8-hr periodicity. Further, the circadian clock does not seem to be involved in this process, providing new insight into the mechanisms involved in the tooth growth.

16.
Sci Rep ; 9(1): 10171, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308426

RESUMO

The circadian clock regulates behavioural and physiological processes in a 24-h cycle. The nuclear receptors REV-ERBα and REV-ERBß are involved in the cell-autonomous circadian transcriptional/translational feedback loops as transcriptional repressors. A number of studies have also demonstrated a pivotal role of REV-ERBs in regulation of metabolic, neuronal, and inflammatory functions including bile acid metabolism, lipid metabolism, and production of inflammatory cytokines. Given the multifunctional role of REV-ERBs, it is important to elucidate the mechanism through which REV-ERBs exert their functions. To this end, we established a Rev-erbα/Rev-erbß double-knockout mouse embryonic stem (ES) cell model and analyzed the circadian clock and clock-controlled output gene expressions. A comprehensive mRNA-seq analysis revealed that the double knockout of both Rev-erbα and Rev-erbß does not abrogate expression rhythms of E-box-regulated core clock genes but drastically changes a diverse set of other rhythmically-expressed output genes. Of note, REV-ERBα/ß deficiency does not compromise circadian expression rhythms of PER2, while REV-ERB target genes, Bmal1 and Npas2, are significantly upregulated. This study highlight the relevance of REV-ERBs as pivotal output mediators of the mammalian circadian clock.


Assuntos
Relógios Circadianos/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas Repressoras/metabolismo , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Células-Tronco Embrionárias/fisiologia , Expressão Gênica/genética , Regulação da Expressão Gênica/genética , Mamíferos/genética , Camundongos , Camundongos Knockout , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/fisiologia , RNA Mensageiro/genética , Receptores Citoplasmáticos e Nucleares/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
17.
Biophys J ; 95(1): 435-50, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18339737

RESUMO

Previously, investigations using single-fluorescent-molecule tracking at frame rates of up to 65 Hz, showed that the transmembrane MHC class II protein and its GPI-anchored modified form expressed in CHO cells undergo simple Brownian diffusion, without any influence of actin depolymerization with cytochalasin D. These results are at apparent variance with the view that GPI-anchored proteins stay with cholesterol-enriched raft domains, as well as with the observation that both lipids and transmembrane proteins undergo short-term confined diffusion within a compartment and long-term hop diffusion between compartments. Here, this apparent discrepancy has been resolved by reexamining the same paradigm, by using both high-speed single-particle tracking (50 kHz) and single fluorescent-molecule tracking (30 Hz). Both molecules exhibited rapid hop diffusion between 40-nm compartments, with an average dwell time of 1-3 ms in each compartment. Cytochalasin D hardly affected the hop diffusion, consistent with previous observations, whereas latrunculin A increased the compartment sizes with concomitant decreases of the hop rates, which led to an approximately 50% increase in the median macroscopic diffusion coefficient. These results indicate that the actin-based membrane skeleton influences the diffusion of both transmembrane and GPI-anchored proteins.


Assuntos
Glicosilfosfatidilinositóis/química , Antígenos de Histocompatibilidade Classe II/química , Microscopia de Fluorescência/métodos , Técnicas de Sonda Molecular , Animais , Células CHO , Cricetinae , Cricetulus , Difusão , Glicosilfosfatidilinositóis/metabolismo , Antígenos de Histocompatibilidade Classe II/metabolismo
18.
Sci Rep ; 7(1): 7306, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779094

RESUMO

Circadian clocks in mammals function in most organs and tissues throughout the body. Various renal functions such as the glomerular filtration and excretion of electrolytes exhibit circadian rhythms. Although it has been reported that the expression of the clock genes composing molecular oscillators show apparent daily rhythms in rodent kidneys, functional variations of regional clocks are not yet fully understood. In this study, using macroscopic bioluminescence imaging method of the PER2::Luciferase knock-in mouse kidney, we reveal that strong and robust circadian clock oscillation is observed in the medulla. In addition, the osmotic pressure in the inner medulla shows apparent daily fluctuation, but not in the cortex. Quantitative-PCR analysis of the genes contributing to the generation of high osmotic pressure or the water re-absorption in the inner medulla, such as vasopressin receptors (V1aR, V2R), urea transporter (UT-A2) and water channel (Aqp2) show diurnal variations as well as clock genes. Deficiency of an essential clock gene Bmal1 impairs day-night variations of osmotic pressure gradient in the inner medulla, suggesting that circadian clocks in the medulla part of the kidney may regulate the circadian rhythm of cortico-medullary osmotic pressure gradient, and may contribute physiological day-night rhythm of urination.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Rim/fisiologia , Osmorregulação , Fatores de Transcrição ARNTL/deficiência , Fatores de Transcrição ARNTL/genética , Animais , Expressão Gênica , Genes Reporter , Camundongos , Camundongos Knockout , Pressão Osmótica , Proteínas Circadianas Period/metabolismo , Transporte Proteico
19.
J Biol Rhythms ; 31(1): 48-56, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26511603

RESUMO

Most organisms have cell-autonomous circadian clocks to coordinate their activity and physiology according to 24-h environmental changes. Despite recent progress in circadian studies, it is not fully understood how the period length and the robustness of mammalian circadian rhythms are determined. In this study, we established a series of mouse embryonic stem cell (ESC) lines with single or multiplex clock gene ablations using the CRISPR/Cas9-based genome editing method. ESC-based in vitro circadian clock formation assay shows that the CRISPR-mediated clock gene disruption not only reproduces the intrinsic circadian molecular rhythms of previously reported mice tissues and cells lacking clock genes but also reveals that complexed mutations, such as CKIδ(m/m):CKIε(+/m):Cry2(m/m) mutants, exhibit an additively lengthened circadian period. By using these mutant cells, we also investigated the relation between period length alteration and temperature compensation. Although CKIδ-deficient cells slightly affected the temperature insensitivity of period length, we demonstrated that the temperature compensation property is largely maintained in all mutants. These results show that the ESC-based assay system could offer a more systematic and comprehensive approach to the genotype-chronotype analysis of the intracellular circadian clockwork in mammals.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Temperatura , Animais , Sistemas CRISPR-Cas , Linhagem Celular , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutação , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
20.
Mol Biol Cell ; 27(7): 1101-19, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26864625

RESUMO

The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs. The cross-section size and the cytoplasmic domain size both affected the hop frequency. Electron tomography identified the actin-based membrane skeleton (MSK) located within 8.8 nm from the PM cytoplasmic surface of PtK2 cells and demonstrated that the MSK mesh size was the same as the compartment size for PM molecular diffusion. The extracellular matrix and extracellular domains of membrane proteins were not involved in hop diffusion. These results support a model of anchored TM-protein pickets lining actin-based MSK as a major mechanism for regulating diffusion.


Assuntos
Citoesqueleto de Actina , Membrana Celular/metabolismo , Fosfolipídeos/química , Receptores da Transferrina/química , Animais , Linhagem Celular , Difusão , Humanos , Modelos Biológicos , Potoroidae , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA