Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurophysiol ; 78(3): 1373-83, 1997 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9310428

RESUMO

Neurons in the lateral intraparietal area and intermediate layers of the superior colliculus show predictive visual responses. They respond before an impending saccade to a stimulus that will be brought into their receptive field by that saccade. In these experiments we sought to establish whether the monkey frontal eye field had a similar predictive response. We recorded from 100 presaccadic frontal eye field neurons (32 visual cells, 48 visuomovement cells, and 20 movement cells) with the use of the classification criteria of Bruce and Goldberg. We studied each cell in a continuous stimulus task, where the monkey made a saccade that brought a recently appearing stimulus into its receptive field. The latency of response in the continuous stimulus task varied from 52 ms before the saccade to 272 ms after the saccade. We classified cells as having predictive visual responses if their latency in the continuous stimulus task was less than the latency of their visual ON response to a stimulus in their receptive or movement field as described in a visual fixation task. Thirty-four percent (11 of 32) of the visual cells, 31% (15 of 48) of the visuomovement cells, and no (0 of 20) movement cells showed a predictive visual response. The cells with predictive responses never responded to the stimulus when the monkey did not make the saccade that would bring that stimulus into the receptive field, and never discharged in association with that saccade unless it brought a stimulus into the receptive field. The response in the continuous stimulus task was almost always weaker than the visual ON response to a stimulus flashed in the receptive field. Because cells with visual responses but not cells with movement activity alone showed the effect, we conclude that the predictive visual response is a property of the visual processing in the frontal eye field, i.e., a response to the stimulus in the future receptive field. It is not dependent on the actual planning or execution of a saccade to that stimulus. We suggest that the predictive visual mechanism is one in which the brain dynamically calculates the spatial location of objects in terms of desired displacement. This enables the oculomotor system to perform in a spatially accurate manner when there is a dissonance between the retinal location of a target and the saccade necessary to acquire that target. This mechanism does not require an explicit calculation of target position in some supraretinal coordinate system.


Assuntos
Movimentos Sacádicos/fisiologia , Percepção Espacial/fisiologia , Campos Visuais/fisiologia , Animais , Potenciais Evocados Visuais/fisiologia , Macaca mulatta , Masculino , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia , Estimulação Luminosa , Colículos Superiores/citologia , Colículos Superiores/fisiologia
2.
J Neurophysiol ; 86(5): 2344-52, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11698524

RESUMO

Monkeys and humans can easily make accurate saccades to stimuli that appear and disappear before an intervening saccade to a different location. We used the flashed-stimulus task to study the memory processes that enable this behavior, and we found two different kinds of memory responses under these conditions. In the short-term spatial memory response, the monkey fixated, a stimulus appeared for 50 ms outside the neuron's receptive field, and from 200 to 1,000 ms later the monkey made a saccade that brought the receptive field onto the spatial location of the vanished stimulus. Twenty-eight of 48 visuomovement cells and 21/32 visual cells responded significantly under these circumstances even though they did not discharge when the monkey made the same saccade without the stimulus present or when the stimulus appeared and the monkey did not make a saccade that brought its spatial location into the receptive field. Response latencies ranged from 48 ms before the beginning of the saccade (predictive responses) to 272 ms after the beginning of the saccade. After the monkey made a series of 16 saccades that brought a stimulus into the receptive field, 21 neurons demonstrated a longer term, intertrial memory response: they discharged even on trials in which no stimulus appeared at all. This intertrial memory response was usually much weaker than the within-trial memory response, and it often lasted for over 20 trials. We suggest that the frontal eye field maintains a spatially accurate representation of the visual world that is not dependent on constant or continuous visual stimulation, and can last for several minutes.


Assuntos
Memória/fisiologia , Percepção Espacial/fisiologia , Campos Visuais , Animais , Fixação Ocular/fisiologia , Macaca mulatta , Memória de Curto Prazo/fisiologia , Neurônios Aferentes/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA