Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
2.
Food Control ; 120: 107550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536722

RESUMO

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

3.
Molecules ; 26(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34500752

RESUMO

ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations.

4.
Langmuir ; 35(14): 4927-4935, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-30869903

RESUMO

Measuring the number concentration of colloidal nanoparticles (NPs) is critical for assessing reproducibility, enabling compliance with regulation, and performing risk assessments of NP-enabled products. For nanomedicines, their number concentration directly relates to their dose. However, the lack of relevant reference materials and established traceable measurement approaches make the validation of methods for NP number concentration difficult. Furthermore, commercial products often exhibit agglomeration, but guidelines for dealing with nonideal samples are scarce. We have compared the performance of five benchtop measurement methods for the measurement of colloidal number concentration in the presence of different levels of agglomeration. The methods are UV-visible spectroscopy, differential centrifugal sedimentation, dynamic light scattering, particle tracking analysis, and single-particle inductively coupled plasma mass spectrometry. We find that both ensemble and particle-by-particle methods are in close agreement for monodisperse NP samples and three methods are within 20% agreement for agglomerated samples. We discuss the sources of measurement uncertainties, including how particle agglomeration affects measurement results. This work is a first step toward validation and expansion of the toolbox of methods available for the measurement of real-world NP products.

5.
J Chem Ecol ; 44(7-8): 711-726, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29978430

RESUMO

Phorodon humuli (Damson-hop aphid) is one of the major pests of hops in the northern hemisphere. It causes significant yield losses and reduces hop quality and economic value. Damson-hop aphid is currently controlled with insecticides, but the number of approved pesticides is steadily decreasing. In addition, the use of insecticides almost inevitably results in the development of resistant aphid genotypes. An integrated approach to pest management in hop cultivation is therefore badly needed in order to break this cycle and to prevent the selection of strains resistant to the few remaining registered insecticides. The backbone of such an integrated strategy is the breeding of hop cultivars that are resistant to Damson-hop aphid. However, up to date mechanisms of hops resistance towards Damson-hop aphids have not yet been unraveled. In the experiments presented here, we used metabolite profiling followed by multivariate analysis and show that metabolites responsible for hop aroma and flavor (sesquiterpenes) in the cones can also be found in the leaves, long before the hop cones develop, and may play a role in resistance against aphids. In addition, aphid feeding induced a change in the metabolome of all hop genotypes particularly an increase in a number of oxidized compounds, which suggests this may be part of a resistance mechanism.


Assuntos
Afídeos/fisiologia , Humulus/metabolismo , Humulus/parasitologia , Metaboloma , Metabolômica , Animais , Resistência à Doença , Cromatografia Gasosa-Espectrometria de Massas/métodos , Genótipo , Interações Hospedeiro-Parasita , Humulus/genética , Humulus/crescimento & desenvolvimento , Metabolômica/métodos , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Sesquiterpenos/metabolismo
6.
Anal Bioanal Chem ; 409(1): 63-80, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27699450

RESUMO

Estimating consumer exposure to nanomaterials (NMs) in food products and predicting their toxicological properties are necessary steps in the assessment of the risks of this technology. To this end, analytical methods have to be available to detect, characterize and quantify NMs in food and materials related to food, e.g. food packaging and biological samples following metabolization of food. The challenge for the analytical sciences is that the characterization of NMs requires chemical as well as physical information. This article offers a comprehensive analysis of methods available for the detection and characterization of NMs in food and related products. Special attention was paid to the crucial role of sample preparation methods since these have been partially neglected in the scientific literature so far. The currently available instrumental methods are grouped as fractionation, counting and ensemble methods, and their advantages and limitations are discussed. We conclude that much progress has been made over the last 5 years but that many challenges still exist. Future perspectives and priority research needs are pointed out. Graphical Abstract Two possible analytical strategies for the sizing and quantification of Nanoparticles: Asymmetric Flow Field-Flow Fractionation with multiple detectors (allows the determination of true size and mass-based particle size distribution); Single Particle Inductively Coupled Plasma Mass Spectrometry (allows the determination of a spherical equivalent diameter of the particle and a number-based particle size distribution).


Assuntos
Bebidas/análise , Análise de Alimentos/métodos , Nanopartículas/análise , Centrifugação/métodos , Cromatografia/métodos , Fracionamento por Campo e Fluxo/métodos , Espectrometria de Massas/métodos , Microscopia Eletrônica/métodos , Tamanho da Partícula , Ressonância de Plasmônio de Superfície/métodos
7.
EFSA J ; 22(10): e8880, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39421729

RESUMO

The present opinion is the follow-up of the conclusions and recommendations of the Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive relevant to the safety assessment for all age groups. In addition, the risk assessment of silicon dioxide (E 551) for its use in food for infants below 16 weeks of age is performed. Based on the newly available information on the characterisation of the SAS used as E 551 and following the principles of the 2021 EFSA Guidance on Particle-TR, the conventional safety assessment has been complemented with nano-specific considerations. Given the uncertainties resulting from the limitations of the database and in the absence of genotoxicity concern, the Panel considered that it is not appropriate to derive an acceptable daily intake (ADI) but applied the margin of exposure (MOE) approach for the risk assessment. The Panel concluded that the MOE should be at least 36 for not raising a safety concern. The calculated MOEs considering the dietary exposure estimates for all population groups using the refined non-brand loyal scenario, estimated at the time of the 2018 re-evaluation, were all above 36. The Panel concluded that E 551 does not raise a safety concern in all population groups at the reported uses and use levels. The use of E 551 in food for infants below 16 weeks of age in FC 13.1.1 and FC 13.1.5.1 does not raise a safety concern at the current exposure levels. The Panel also concluded that the technical data provided support an amendment of the specifications for E 551 laid down in Commission Regulation (EU) No 231/2012. The paucity of toxicological studies with proper dispersion protocol (with the exception of the genotoxicity studies) creates uncertainty in the present assessment of the potential toxicological effects related to the exposure to E 551 nanosize aggregates.

8.
Chemosphere ; 312(Pt 1): 137175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36370761

RESUMO

In 2019, 368 mln tonnes of plastics were produced worldwide. Likewise, the textiles and apparel industry, with an annual revenue of 1.3 trillion USD in 2016, is one of the largest fast-growing industries. Sustainable use of resources forces the development of new plastic and textile recycling methods and implementation of the circular economy (reduce, reuse and recycle) concept. However, circular use of plastics and textiles could lead to the accumulation of a variety of contaminants in the recycled product. This paper first reviewed the origin and nature of potential hazards that arise from recycling processes of plastics and textiles. Next, we reviewed current analytical methods and safety assessment frameworks that could be adapted to detect and identify these contaminants. Various contaminants can end up in recycled plastic. Phthalates are formed during waste collection while flame retardants and heavy metals are introduced during the recycling process. Contaminants linked to textile recycling include; detergents, resistant coatings, flame retardants, plastics coatings, antibacterial and anti-mould agents, pesticides, dyes, volatile organic compounds and nanomaterials. However, information is limited and further research is required. Various techniques are available that have detected various compounds, However, standards have to be developed in order to identify these compounds. Furthermore, the techniques mentioned in this review cover a wide range of organic chemicals, but studies covering potential inorganic contamination in recycled materials are still missing. Finally, approaches like TTC and CoMSAS for risk assessment should be used for recycled plastic and textile materials.


Assuntos
Retardadores de Chama , Plásticos , Plásticos/química , Reciclagem/métodos , Têxteis , Indústrias
9.
NanoImpact ; 29: 100441, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36427812

RESUMO

Contamination of the environment with nano-and microplastic particles (NMPs) and its putative adverse effects on organisms, ecosystems, and human health is gaining increasing scientific and public attention. Various studies show that NMPs occur abundantly within the environment, leading to a high likelihood of human exposure to NMPs. Here, different exposure scenarios can occur. The most notable exposure routes of NMPs into the human body are via the airways and gastrointestinal tract (GIT) through inhalation or ingestion, but also via the skin due to the use of personal care products (PCPs) containing NMPs. Once NMPs have entered the human body, it is possible that they are translocated from the exposed organ to other body compartments. In our review article, we combine the current knowledge on the (1) exposure routes of NMPs to humans with the basic understanding of the potential (2) translocation mechanisms into human tissues and, consequently, their (3) fate within the human body. Regarding the (1) exposure routes, we reviewed the current knowledge on the occurrence of NMPs in food, beverages, personal care products and the air (focusing on indoors and workplaces) and found that the studies suggest an abundant presence of MPs within the exposure scenarios. The overall abundance of MPs in exposure matrices relevant to humans highlights the importance of understanding whether NMPs have the potential for tissue translocation. Therefore, we describe the current knowledge on the potential (2) translocation pathways of NMPs from the skin, GIT and respiratory systems to other body compartments. Here, particular attention was paid to how likely NMPs can translocate from the primary exposed organs to secondary organs due to naturally occurring defence mechanisms against tissue translocation. Based on the current understanding, we conclude that a dermal translocation of NMPs is rather unlikely. In contrast, small MPs and NPs can generally translocate from the GIT and respiratory system to other tissues. Thus, we reviewed the existing literature on the (3) fate of NMPs within the human body. Based on the current knowledge of the contamination of human exposure routes and the potential translocation mechanisms, we critically discuss the size of the detected particles reported in the fate studies. In some cases, the particles detected in human tissue samples exceed the size of a particle to overcome biological barriers allowing particle translocation into tissues. Therefore, we emphasize the importance of critically reading and discussing the presented results of NMP in human tissue samples.


Assuntos
Microplásticos , Plásticos , Humanos , Microplásticos/metabolismo , Plásticos/metabolismo , Ecossistema , Trato Gastrointestinal/metabolismo , Sistema Respiratório/metabolismo
10.
EFSA J ; 21(7): e08106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37522100

RESUMO

Calcium carbonate (E 170) was re-evaluated in 2011 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of calcium carbonate (E 170) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) and as carry over in line with Annex III, Part 5 Section B to Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators (IBOs) to provide the requested information to complete the risk assessment. The Panel concluded that there is no need for a numerical acceptable daily intake (ADI) for calcium carbonate and that, in principle, there are no safety concern with respect to the exposure to calcium carbonate per se at the currently reported uses and use levels in all age groups of the population, including infants below 16 weeks of age. With respect to the calcium intake resulting from the use of E 170 in food for the general population and infants < 16 weeks of age, the Panel concluded that it contributes only to a small part to the overall calcium dietary exposure. However, the unavoidable presence of aluminium in E 170 is of concern and should be addressed. In addition, the Panel concluded that the technical data provided by the IBO support further amendments of the specifications for E 170 laid down in Commission Regulation (EU) No 231/2012.

11.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215053

RESUMO

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied. The resulting transport efficiencies did not deviate much under ideal conditions. The TEF method however systematically resulted in lower transport efficiencies. The extent of this difference (0-300% rel. difference) depended largely on the choice and storage conditions of the nanoparticle suspensions used for the determination. The TES method is recommended when the principal measurement objective is particle size. If the main aim of the measurement is the determination of the particle number concentration, the TEF approach could be preferred as it might better account for particle losses in the sample introduction system.

12.
New Phytol ; 187(2): 343-354, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20487312

RESUMO

SUMMARY: *Strigolactones are considered a novel class of plant hormones that, in addition to their endogenous signalling function, are exuded into the rhizosphere acting as a signal to stimulate hyphal branching of arbuscular mycorrhizal (AM) fungi and germination of root parasitic plant seeds. Considering the importance of the strigolactones and their biosynthetic origin (from carotenoids), we investigated the relationship with the plant hormone abscisic acid (ABA). *Strigolactone production and ABA content in the presence of specific inhibitors of oxidative carotenoid cleavage enzymes and in several tomato ABA-deficient mutants were analysed by LC-MS/MS. In addition, the expression of two genes involved in strigolactone biosynthesis was studied. *The carotenoid cleavage dioxygenase (CCD) inhibitor D2 reduced strigolactone but not ABA content of roots. However, in abamineSG-treated plants, an inhibitor of 9-cis-epoxycarotenoid dioxygenase (NCED), and the ABA mutants notabilis, sitiens and flacca, ABA and strigolactones were greatly reduced. The reduction in strigolactone production correlated with the downregulation of LeCCD7 and LeCCD8 genes in all three mutants. *The results show a correlation between ABA levels and strigolactone production, and suggest a role for ABA in the regulation of strigolactone biosynthesis.


Assuntos
Ácido Abscísico/metabolismo , Lactonas/metabolismo , Ácido Abscísico/biossíntese , Vias Biossintéticas/efeitos dos fármacos , Carotenoides/metabolismo , Cromatografia Líquida , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Germinação/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Espectrometria de Massas , Mutação/genética , Orobanche/efeitos dos fármacos , Orobanche/crescimento & desenvolvimento , Orobanche/metabolismo , Fosfatos/deficiência , Fosfatos/metabolismo , Exsudatos de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Nanotoxicology ; 14(1): 111-126, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31648587

RESUMO

Nanomaterials, especially silver nanoparticles (AgNPs), are used in a broad range of products owing to their antimicrobial potential. Oral ingestion is considered as a main exposure route to AgNPs. This study aimed to investigate the impact of the biochemical conditions within the human digestive tract on the intestinal fate of AgNPs across an intestinal in vitro model of differentiated Caco-2/HT29-MTX cells. The co-culture model was exposed to different concentrations (250-2500 µg/L) of pristine and in vitro digested (IVD) AgNPs and silver nitrate for 24 h. ICP-MS and spICP-MS measurements were performed for quantification of total Ag and AgNPs. The AgNPs size distribution, dissolution, and particle concentration (mass- and number-based) were characterized in the cell fraction and in the apical and basolateral compartments of the monolayer cultures. A significant fraction of the AgNPs dissolved (86-92% and 48-70%) during the digestion. Cellular exposure to increasing concentrations of pristine or IVD AgNPs resulted in a concentration dependent increase of total Ag and AgNPs content in the cellular fractions. The cellular concentrations were significantly lower following exposure to IVD AgNPs compared to the pristine AgNPs. Transport of silver as either total Ag or AgNPs was limited (<0.1%) following exposure to pristine and IVD AgNPs. We conclude that the surface chemistry of AgNPs and their digestion influence their dissolution properties, uptake/association with the Caco-2/HT29-MTX monolayer. This highlights the need to take in vitro digestion into account when studying nanoparticle toxicokinetics and toxicodynamics in cellular in vitro model systems.


Assuntos
Trato Gastrointestinal/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Disponibilidade Biológica , Transporte Biológico , Células CACO-2 , Técnicas de Cocultura , Relação Dose-Resposta a Droga , Trato Gastrointestinal/metabolismo , Células HT29 , Humanos , Nanopartículas Metálicas/química , Tamanho da Partícula , Prata/química , Prata/metabolismo , Nitrato de Prata/química , Nitrato de Prata/metabolismo , Nitrato de Prata/toxicidade , Análise Espectral , Propriedades de Superfície
14.
Nanotoxicology ; 14(3): 420-432, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31994971

RESUMO

Silicon dioxide (silica, SiO2, SAS) and titanium dioxide (TiO2) are produced in high volumes and applied in many consumer and food products. As a consequence, there is a potential human exposure and subsequent systemic uptake of these particles. In this study we show the characterization and quantification of both total silicon (Si) and titanium (Ti), and particulate SiO2 and TiO2 in postmortem tissue samples from 15 deceased persons. Included tissues are liver, spleen, kidney and the intestinal tissues jejunum and ileum. Low-level analysis was enabled by the use of fully validated sample digestion methods combined with (single particle) inductively coupled plasma high resolution mass spectrometry techniques (spICP-HRMS). The results show a total-Si concentration ranging from <2 to 191 mg Si/kg (median values of 5.8 (liver), 9.5 (spleen), 7.7 (kidney), 6.8 (jejunum), 7.6 (ileum) mg Si/kg) while the particulate SiO2 ranged from <0.2 to 25 mg Si/kg (median values of 0.4 (liver), 1.0 (spleen), 0.4 (kidney), 0.7 (jejunum, 0.6 (ileum) mg Si/kg), explaining about 10% of the total-Si concentration. Particle sizes ranged from 150 to 850 nm with a mode of 270 nm. For total-Ti the results show concentrations ranging from <0.01 to 2.0 mg Ti/kg (median values of 0.02 (liver), 0.04 (spleen), 0.05 (kidney), 0.13 (jejunum), 0.26 (ileum) mg Ti/kg) while particulate TiO2 concentrations ranged from 0.01 to 1.8 mg Ti/kg (median values of 0.02 (liver), 0.02 (spleen), 0.03 (kidney), 0.08 (jejunum), 0.25 (ileum) mg Ti/kg). In general, the particulate TiO2 explained 80% of the total-Ti concentration. This indicates that most Ti in these organ tissues is particulate material. The detected particles comprise primary particles, aggregates and agglomerates, and were in the range of 50-500 nm with a mode in the range of 100-160 nm. About 17% of the detected TiO2 particles had a size <100 nm. The presence of SiO2 and TiO2 particles in liver tissue was confirmed by scanning electron microscopy with energy dispersive X-ray spectrometry.


Assuntos
Intestino Delgado/química , Rim/química , Fígado/química , Dióxido de Silício/análise , Baço/química , Titânio/análise , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Masculino , Microscopia Eletrônica de Varredura , Pessoa de Meia-Idade , Tamanho da Partícula , Espectrometria por Raios X , Distribuição Tecidual
15.
Sci Total Environ ; 621: 210-218, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29179077

RESUMO

Nano-enabled consumer products are a likely source of nanoparticles in the environment and a number of studies have shown the release of nanoparticles from commercial products. Predicted environmental concentrations have been calculated but there is a need for real measurement data to validate these calculations. However, the detection of engineered nanoparticles in environmental matrices is challenging because of the low predicted environmental concentrations which may be in the ng/L range. In this study nanosized Ag, CeO2 and TiO2 have been measured in multiple surface water samples collected along the rivers Meuse and IJssel in the Netherlands using single-particle ICP-MS as measurement technique. Validation of the analytical method showed its capability to quantitatively determine nanoparticles at low concentrations. Concentration mass detection limits for Ag, CeO2 and TiO2 were 0.1ng/L, 0.05ng/L and 10ng/L respectively. Size detection limits for Ag, CeO2 and TiO2 were 14, 10 and 100nm. The results of the study confirm the presence of nano-sized Ag and CeO2 particles and micro-sized TiO2 particles in these surface waters. n-Ag was present in all samples in concentrations ranging from 0.3 to 2.5ng/L with an average concentration of 0.8ng/L and an average particle size of 15nm. n-CeO2 was found in all samples with concentrations ranging from 0.4 to 5.2ng/L with an average concentration of 2.7ng/L and an average particle size of 19nm. Finally, µ-TiO2 was found in all samples with a concentration ranging from 0.2 to 8.1µg/L with an average concentration of 3.1µg/L and an average particle size of 300nm. The particle sizes that were found are comparable with the particle sizes that are used in nanomaterial applications and consumer products. The nanoparticle concentrations confirm the predicted environmental concentrations values in water for all three nanoparticles.

16.
Front Plant Sci ; 7: 312, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014329

RESUMO

The holoparasitic broomrapes, Orobanche spp. and Phelipanche spp. (Orobanchaceae), are root parasites that completely depend on a host plant for survival and reproduction. There is considerable controversy on the taxonomy of this biologically and agronomically important family. Flowers of over 25 parasitic Orobanchaceae and a number of close, parasitic and non-parasitic, relatives emitted a complex blend of volatile organic compounds (VOCs), consisting of over 130 VOCs per species. Floral VOC blend-based phylogeny supported the known taxonomy in internal taxonomic grouping of genus and eliminated the uncertainty in some taxonomical groups. Moreover, phylogenetic analysis suggested separation of the broomrapes into two main groups parasitizing annual and perennial hosts, and for the annual hosts, into weedy and non-weedy broomrapes. We conclude that floral VOCs are a significant tool in species identification and possibly even in defining new species and can help to improve controversial taxonomy in the Orobanchaceae.

17.
Environ Pollut ; 218: 870-878, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27524251

RESUMO

Physicochemical properties of nanoparticles influence their environmental fate and toxicity, and studies investigating this are vital for a holistic approach towards a comprehensive and adequate environmental risk assessment. In this study, we investigated the effects of size, surface coating (charge) of silver nanoparticles (AgNPs) - a most commonly-used nanoparticle-type, on the bioaccumulation in, and toxicity (survival, growth, cocoon production) to the earthworm Lumbricus rubellus. AgNPs were synthesized in three sizes: 20, 35 and 50 nm. Surface-coating with bovine serum albumin (AgNP_BSA), chitosan (AgNP_Chit), or polyvinylpyrrolidone (AgNP_PVP) produced negative, positive and neutral particles respectively. In a 28-day sub-chronic reproduction toxicity test, earthworms were exposed to these AgNPs in soil (0-250 mg Ag/kg soil DW). Earthworms were also exposed to AgNO3 at concentrations below known EC50. Total Ag tissue concentration indicated uptake by earthworms was generally highest for the AgNP_BSA especially at the lower exposure concentration ranges, and seems to reach a plateau level between 50 and 100 mg Ag/kg soil DW. Reproduction was impaired at high concentrations of all AgNPs tested, with AgNP_BSA particles being the most toxic. The EC50 for the 20 nm AgNP_BSA was 66.8 mg Ag/kg soil, with exposure to <60 mg Ag/kg soil already showing a decrease in the cocoon production. Thus, based on reproductive toxicity, the particles ranked: AgNP_BSA (negative) > AgNP_PVP (neutral) > Chitosan (positive). Size had an influence on uptake and toxicity of the AgNP_PVP, but not for AgNP_BSA nor AgNP_Chit. This study provides essential information on the role of physicochemical properties of AgNPs in influencing uptake by a terrestrial organism L. rubellus under environmentally relevant conditions. It also provides evidence of the influence of surface coating (charge) and the limited effect of size in the range of 20-50 nm, in driving uptake and toxicity of the AgNPs tested.


Assuntos
Nanopartículas Metálicas/toxicidade , Oligoquetos/efeitos dos fármacos , Prata/toxicidade , Poluentes do Solo/toxicidade , Animais , Fenômenos Químicos , Quitosana/química , Relação Dose-Resposta a Droga , Meio Ambiente , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Oligoquetos/crescimento & desenvolvimento , Oligoquetos/metabolismo , Tamanho da Partícula , Povidona/química , Soroalbumina Bovina/química , Prata/química , Prata/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Propriedades de Superfície
18.
Nanotoxicology ; 10(10): 1431-1441, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27597447

RESUMO

The mode of action of silver nanoparticles (AgNPs) is suggested to be exerted through both Ag+ and AgNP dependent mechanisms. Ingestion is one of the major NP exposure routes, and potential effects are often studied using Caco-2 cells, a well-established model for the gut epithelium. MCF-7 cells are epithelial breast cancer cells with extensive well-characterized toxicogenomics profiles. In the present study, we aimed to gain a deeper understanding of the cellular molecular responses in Caco-2 and MCF-7 cells after AgNP exposure in order to evaluate whether epithelial cells derived from different tissues demonstrated similar responses. These insights could possibly reduce the size of cell panels for NP hazard identification screening purposes. AgNPs of 20, 30, 60, and 110 nm, and AgNO3 were exposed for 6 h and 24 h. AgNPs were shown to be taken up and dissolve intracellularly. Compared with MCF-7 cells, Caco-2 cells showed a higher sensitivity to AgNPs, slower gene expression kinetics and absence of NP size-dependent responses. However, on a molecular level, no significant differences were observed between the two cell types. Transcriptomic analysis showed that Ag(NP) exposure caused (oxidative) stress responses, possibly leading to cell death in both cell lines. There was no indication for effects specifically induced by AgNPs. Responses to AgNPs appeared to be induced by silver ions released from the AgNPs. In conclusion, differences in mRNA responses to AgNPs between Caco-2 and MCF-7 cells were mainly related to timing and magnitude, but not to a different underlying mechanism.


Assuntos
Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Transcriptoma/efeitos dos fármacos , Células CACO-2 , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Cinética , Células MCF-7 , Tamanho da Partícula , Prata/metabolismo , Nitrato de Prata/toxicidade , Propriedades de Superfície
19.
Nanotoxicology ; 10(2): 173-84, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26001188

RESUMO

Solubility is an important physicochemical parameter in nanoregulation. If nanomaterial is completely soluble, then from a risk assessment point of view, its disposal can be treated much in the same way as "ordinary" chemicals, which will simplify testing and characterisation regimes. This review assesses potential techniques for the measurement of nanomaterial solubility and evaluates the performance against a set of analytical criteria (based on satisfying the requirements as governed by the cosmetic regulation as well as the need to quantify the concentration of free (hydrated) ions). Our findings show that no universal method exists. A complementary approach is thus recommended, to comprise an atomic spectrometry-based method in conjunction with an electrochemical (or colorimetric) method. This article shows that although some techniques are more commonly used than others, a huge research gap remains, related with the need to ensure data reliability.


Assuntos
Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/normas , Nanoestruturas/química , Métodos Analíticos de Preparação de Amostras/métodos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Modelos Teóricos , Reprodutibilidade dos Testes , Solubilidade , Espectrofotometria Atômica
20.
J Nanopart Res ; 17(5): 231, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26028989

RESUMO

The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6-12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA