Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 114
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(35): e2116505119, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35994650

RESUMO

Albuminuria is a hallmark of glomerular disease of various etiologies. It is not only a symptom of glomerular disease but also a cause leading to glomerulosclerosis, interstitial fibrosis, and eventually, a decline in kidney function. The molecular mechanism underlying albuminuria-induced kidney injury remains poorly defined. In our genetic model of nephrotic syndrome (NS), we have identified CHOP (C/EBP homologous protein)-TXNIP (thioredoxin-interacting protein) as critical molecular linkers between albuminuria-induced ER dysfunction and mitochondria dyshomeostasis. TXNIP is a ubiquitously expressed redox protein that binds to and inhibits antioxidant enzyme, cytosolic thioredoxin 1 (Trx1), and mitochondrial Trx2. However, very little is known about the regulation and function of TXNIP in NS. By utilizing Chop-/- and Txnip-/- mice as well as 68Ga-Galuminox, our molecular imaging probe for detection of mitochondrial reactive oxygen species (ROS) in vivo, we demonstrate that CHOP up-regulation induced by albuminuria drives TXNIP shuttling from nucleus to mitochondria, where it is required for the induction of mitochondrial ROS. The increased ROS accumulation in mitochondria oxidizes Trx2, thus liberating TXNIP to associate with mitochondrial nod-like receptor protein 3 (NLRP3) to activate inflammasome, as well as releasing mitochondrial apoptosis signal-regulating kinase 1 (ASK1) to induce mitochondria-dependent apoptosis. Importantly, inhibition of TXNIP translocation and mitochondrial ROS overproduction by CHOP deletion suppresses NLRP3 inflammasome activation and p-ASK1-dependent mitochondria apoptosis in NS. Thus, targeting TXNIP represents a promising therapeutic strategy for the treatment of NS.


Assuntos
Albuminúria , Proteínas de Transporte , Rim , Mitocôndrias , Síndrome Nefrótica , Tiorredoxinas , Fator de Transcrição CHOP , Albuminúria/complicações , Albuminúria/genética , Albuminúria/prevenção & controle , Animais , Apoptose , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Deleção de Genes , Inflamassomos/metabolismo , Rim/metabolismo , Rim/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Síndrome Nefrótica/complicações , Síndrome Nefrótica/genética , Síndrome Nefrótica/patologia , Síndrome Nefrótica/prevenção & controle , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxinas/metabolismo , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo
2.
Diabetologia ; 66(7): 1306-1321, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36995380

RESUMO

AIMS/HYPOTHESIS: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons. METHODS: The effect of the GLP-1R agonists dulaglutide and exenatide was examined in Wfs1 knockout mice and in an array of human preclinical models of Wolfram syndrome, including WFS1-deficient human beta cells, human induced pluripotent stem cell (iPSC)-derived beta-like cells and neurons from control individuals and individuals affected by Wolfram syndrome, and humanised mice. RESULTS: Our study shows that the long-lasting GLP-1R agonist dulaglutide reverses impaired glucose tolerance in WFS1-deficient mice, and that exenatide and dulaglutide improve beta cell function and prevent apoptosis in different human WFS1-deficient models including iPSC-derived beta cells from people with Wolfram syndrome. Exenatide improved mitochondrial function, reduced oxidative stress and prevented apoptosis in Wolfram syndrome iPSC-derived neural precursors and cerebellar neurons. CONCLUSIONS/INTERPRETATION: Our study provides novel evidence for the beneficial effect of GLP-1R agonists on WFS1-deficient human pancreatic beta cells and neurons, suggesting that these drugs may be considered as a treatment for individuals with Wolfram syndrome.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Atrofia Óptica , Síndrome de Wolfram , Humanos , Animais , Camundongos , Síndrome de Wolfram/tratamento farmacológico , Síndrome de Wolfram/genética , Exenatida/uso terapêutico , Atrofia Óptica/patologia , Células Secretoras de Insulina/patologia , Camundongos Knockout
3.
Proc Natl Acad Sci U S A ; 117(29): 17389-17398, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32632005

RESUMO

Wolfram syndrome is a rare multisystem disease characterized by childhood-onset diabetes mellitus and progressive neurodegeneration. Most cases are attributed to pathogenic variants in a single gene, Wolfram syndrome 1 (WFS1). There currently is no disease-modifying treatment for Wolfram syndrome, as the molecular consequences of the loss of WFS1 remain elusive. Because diabetes mellitus is the first diagnosed symptom of Wolfram syndrome, we aimed to further examine the functions of WFS1 in pancreatic ß cells in the context of hyperglycemia. Knockout (KO) of WFS1 in rat insulinoma (INS1) cells impaired calcium homeostasis and protein kinase B/Akt signaling and, subsequently, decreased cell viability and glucose-stimulated insulin secretion. Targeting calcium homeostasis with reexpression of WFS1, overexpression of WFS1's interacting partner neuronal calcium sensor-1 (NCS1), or treatment with calpain inhibitor and ibudilast reversed deficits observed in WFS1-KO cells. Collectively, our findings provide insight into the disease mechanism of Wolfram syndrome and highlight new targets and drug candidates to facilitate the development of a treatment for this disorder and similar diseases.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a Calmodulina/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Piridinas/farmacologia , Síndrome de Wolfram/tratamento farmacológico , Animais , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/genética , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Glicoproteínas , Homeostase , Hiperglicemia , Secreção de Insulina , Proteínas de Membrana/genética , Receptor de Insulina , Transcriptoma , Síndrome de Wolfram/genética
4.
Proc Natl Acad Sci U S A ; 117(16): 8912-8923, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32253320

RESUMO

Pancreatic islets regulate glucose homeostasis through coordinated actions of hormone-secreting cells. What underlies the function of the islet as a unit is the close approximation and communication among heterogeneous cell populations, but the structural mediators of islet cellular cross talk remain incompletely characterized. We generated mice specifically lacking ß-cell primary cilia, a cellular organelle that has been implicated in regulating insulin secretion, and found that the ß-cell cilia are required for glucose sensing, calcium influx, insulin secretion, and cross regulation of α- and δ-cells. Protein expression profiling in islets confirms perturbation in these cellular processes and reveals additional targets of cilia-dependent signaling. At the organism level, the deletion of ß-cell cilia disrupts circulating hormone levels, impairs glucose homeostasis and fuel usage, and leads to the development of diabetes. Together, these findings demonstrate that primary cilia not only orchestrate ß-cell-intrinsic activity but also mediate cross talk both within the islet and from islets to other metabolic tissues, thus providing a unique role of cilia in nutrient metabolism and insight into the pathophysiology of diabetes.


Assuntos
Cílios/metabolismo , Diabetes Mellitus/patologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Animais , Cálcio/metabolismo , Comunicação Celular/fisiologia , Cílios/genética , Cílios/patologia , Diabetes Mellitus/genética , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Feminino , Células Secretoras de Glucagon/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
5.
Acta Neuropathol ; 143(5): 547-569, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35389045

RESUMO

Selective neuronal vulnerability to protein aggregation is found in many neurodegenerative diseases including Alzheimer's disease (AD). Understanding the molecular origins of this selective vulnerability is, therefore, of fundamental importance. Tau protein aggregates have been found in Wolframin (WFS1)-expressing excitatory neurons in the entorhinal cortex, one of the earliest affected regions in AD. The role of WFS1 in Tauopathies and its levels in tau pathology-associated neurodegeneration, however, is largely unknown. Here we report that WFS1 deficiency is associated with increased tau pathology and neurodegeneration, whereas overexpression of WFS1 reduces those changes. We also find that WFS1 interacts with tau protein and controls the susceptibility to tau pathology. Furthermore, chronic ER stress and autophagy-lysosome pathway (ALP)-associated genes are enriched in WFS1-high excitatory neurons in human AD at early Braak stages. The protein levels of ER stress and autophagy-lysosome pathway (ALP)-associated proteins are changed in tau transgenic mice with WFS1 deficiency, while overexpression of WFS1 reverses those changes. This work demonstrates a possible role for WFS1 in the regulation of tau pathology and neurodegeneration via chronic ER stress and the downstream ALP. Our findings provide insights into mechanisms that underpin selective neuronal vulnerability, and for developing new therapeutics to protect vulnerable neurons in AD.


Assuntos
Doença de Alzheimer , Tauopatias , Doença de Alzheimer/patologia , Animais , Lisossomos/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/patologia , Agregados Proteicos , Tauopatias/patologia
6.
Proc Natl Acad Sci U S A ; 116(28): 14154-14163, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235574

RESUMO

Emerging evidence has established primary nephrotic syndrome (NS), including focal segmental glomerulosclerosis (FSGS), as a primary podocytopathy. Despite the underlying importance of podocyte endoplasmic reticulum (ER) stress in the pathogenesis of NS, no treatment currently targets the podocyte ER. In our monogenic podocyte ER stress-induced NS/FSGS mouse model, the podocyte type 2 ryanodine receptor (RyR2)/calcium release channel on the ER was phosphorylated, resulting in ER calcium leak and cytosolic calcium elevation. The altered intracellular calcium homeostasis led to activation of calcium-dependent cytosolic protease calpain 2 and cleavage of its important downstream substrates, including the apoptotic molecule procaspase 12 and podocyte cytoskeletal protein talin 1. Importantly, a chemical compound, K201, can block RyR2-Ser2808 phosphorylation-mediated ER calcium depletion and podocyte injury in ER-stressed podocytes, as well as inhibit albuminuria in our NS model. In addition, we discovered that mesencephalic astrocyte-derived neurotrophic factor (MANF) can revert defective RyR2-induced ER calcium leak, a bioactivity for this ER stress-responsive protein. Thus, podocyte RyR2 remodeling contributes to ER stress-induced podocyte injury. K201 and MANF could be promising therapies for the treatment of podocyte ER stress-induced NS/FSGS.


Assuntos
Cálcio/metabolismo , Síndrome Nefrótica/genética , Fatores de Crescimento Neural/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Albuminúria/tratamento farmacológico , Albuminúria/genética , Albuminúria/patologia , Animais , Sinalização do Cálcio/genética , Calpaína/genética , Modelos Animais de Doenças , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Estresse do Retículo Endoplasmático/genética , Glomerulosclerose Segmentar e Focal/tratamento farmacológico , Glomerulosclerose Segmentar e Focal/genética , Glomerulosclerose Segmentar e Focal/patologia , Humanos , Camundongos , Síndrome Nefrótica/tratamento farmacológico , Síndrome Nefrótica/patologia , Podócitos/metabolismo , Podócitos/patologia , Talina/genética , Tiazepinas/farmacologia
7.
BMC Biol ; 19(1): 147, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34320968

RESUMO

BACKGROUND: Copy number variants (CNVs) linked to genes involved in nervous system development or function are often associated with neuropsychiatric disease. While CNVs involving deletions generally cause severe and highly penetrant patient phenotypes, CNVs leading to duplications tend instead to exhibit widely variable and less penetrant phenotypic expressivity among affected individuals. CNVs located on chromosome 15q13.3 affecting the alpha-7 nicotinic acetylcholine receptor subunit (CHRNA7) gene contribute to multiple neuropsychiatric disorders with highly variable penetrance. However, the basis of such differential penetrance remains uncharacterized. Here, we generated induced pluripotent stem cell (iPSC) models from first-degree relatives with a 15q13.3 duplication and analyzed their cellular phenotypes to uncover a basis for the dissimilar phenotypic expressivity. RESULTS: The first-degree relatives studied included a boy with autism and emotional dysregulation (the affected proband-AP) and his clinically unaffected mother (UM), with comparison to unrelated control models lacking this duplication. Potential contributors to neuropsychiatric impairment were modeled in iPSC-derived cortical excitatory and inhibitory neurons. The AP-derived model uniquely exhibited disruptions of cellular physiology and neurodevelopment not observed in either the UM or unrelated controls. These included enhanced neural progenitor proliferation but impaired neuronal differentiation, maturation, and migration, and increased endoplasmic reticulum (ER) stress. Both the neuronal migration deficit and elevated ER stress could be selectively rescued by different pharmacologic agents. Neuronal gene expression was also dysregulated in the AP, including reduced expression of genes related to behavior, psychological disorders, neuritogenesis, neuronal migration, and Wnt, axonal guidance, and GABA receptor signaling. The UM model instead exhibited upregulated expression of genes in many of these same pathways, suggesting that molecular compensation could have contributed to the lack of neurodevelopmental phenotypes in this model. However, both AP- and UM-derived neurons exhibited shared alterations of neuronal function, including increased action potential firing and elevated cholinergic activity, consistent with increased homomeric CHRNA7 channel activity. CONCLUSIONS: These data define both diagnosis-associated cellular phenotypes and shared functional anomalies related to CHRNA7 duplication that may contribute to variable phenotypic penetrance in individuals with 15q13.3 duplication. The capacity for pharmacological agents to rescue some neurodevelopmental anomalies associated with diagnosis suggests avenues for intervention for carriers of this duplication and other CNVs that cause related disorders.


Assuntos
Cromossomos Humanos Par 15 , Variações do Número de Cópias de DNA , Receptor Nicotínico de Acetilcolina alfa7/genética , Cromossomos Humanos Par 15/genética , Humanos , Masculino , Neurônios , Fenótipo
8.
Int J Mol Sci ; 24(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36613674

RESUMO

The endoplasmic reticulum (ER) is a cytosolic organelle that plays an essential role in the folding and processing of new secretory proteins, including insulin. The pathogenesis of diabetes, a group of metabolic disorders caused by dysfunctional insulin secretion (Type 1 diabetes, T1DM) or insulin sensitivity (Type 2 diabetes, T2DM), is known to involve the excess accumulation of "poorly folded proteins", namely, the induction of pathogenic ER stress in pancreatic ß-cells. ER stress is known to contribute to the dysfunction of the insulin-producing pancreatic ß-cells. T1DM and T2DM are multifactorial diseases, especially T2DM; both environmental and genetic factors are involved in their pathogenesis, making it difficult to create experimental disease models. In recent years, however, the development of induced pluripotent stem cells (iPSCs) and other regenerative technologies has greatly expanded research capabilities, leading to the development of new candidate therapies. In this review, we will discuss the mechanism by which dysregulated ER stress responses contribute to T2DM pathogenesis. Moreover, we describe new treatment methods targeting protein folding and ER stress pathways with a particular focus on pivotal studies of Wolfram syndrome, a monogenic form of syndromic diabetes caused by pathogenic variants in the WFS1 gene, which also leads to ER dysfunction.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Síndrome de Wolfram , Humanos , Síndrome de Wolfram/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo
9.
FASEB J ; 34(1): 865-880, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914686

RESUMO

Intramembrane cleavage of transmembrane proteins is a fundamental cellular process to produce important signals that elicit biological responses. These proteolytic events are known as regulated intramembrane proteolysis (RIP). ATF6 and BBF2H7 are transmembrane basic leucine zipper transcription factors and are subjected to RIP by site-1 protease (S1P) and site-2 protease (S2P) sequentially in response to endoplasmic reticulum (ER) stress. However, the detailed mechanisms responsible for RIP of the transcription factors, including the precise cutting sites, are still unknown. In this study, we demonstrated that S1P cleaves BBF2H7 just before the RXXL S1P recognition motif. Conversely, S2P cut at least three different sites in the membrane (next to Leu380, Met381, and Leu385), indicating that S2P cleaves the substrates at variable sites or via a multistep process. Interestingly, we found BBF2H7-derived small peptide (BSP) fragments located between the S1P and S2P cleavage sites in cells exposed to ER stress. Major type of BSP fragments was composed of 45 amino acid including partial transmembrane and luminal regions and easily aggregates like amyloid ß (Aß) protein. These results advance the understanding of poorly characterized ER stress-dependent RIP. Furthermore, the aggregable peptides produced by ER stress could link to the pathophysiology of neurodegenerative disorders.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteólise , Fator 6 Ativador da Transcrição/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Humanos , Fragmentos de Peptídeos/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transcrição Gênica/fisiologia
10.
Lab Invest ; 100(9): 1197-1207, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366942

RESUMO

Endoplasmic reticulum (ER) stress-mediated cell death is an emerging target for human chronic disorders, including neurodegeneration and diabetes. However, there is currently no treatment for preventing ER stress-mediated cell death. Here, we show that mesencephalic astrocyte-derived neurotrophic factor (MANF), a neurotrophic factor secreted from ER stressed cells, prevents ER stress-mediated ß cell death and enhances ß cell proliferation in cell and mouse models of Wolfram syndrome, a prototype of ER disorders. Our results indicate that molecular pathways regulated by MANF are promising therapeutic targets for regenerative therapy of ER stress-related disorders, including diabetes, retinal degeneration, neurodegeneration, and Wolfram syndrome.


Assuntos
Proliferação de Células/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Fatores de Crescimento Neural/farmacologia , Síndrome de Wolfram/prevenção & controle , Animais , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Camundongos Transgênicos , Ratos , Síndrome de Wolfram/metabolismo , Síndrome de Wolfram/fisiopatologia
11.
Lab Invest ; 100(6): 849-862, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32060407

RESUMO

Wolfram Syndrome 1 (WFS1) protein is an endoplasmic reticulum (ER) factor whose deficiency results in juvenile-onset diabetes secondary to cellular dysfunction and apoptosis. The mechanisms guiding ß-cell outcomes secondary to WFS1 function, however, remain unclear. Here, we show that WFS1 preserves normal ß-cell physiology by promoting insulin biosynthesis and negatively regulating ER stress. Depletion of Wfs1 in vivo and in vitro causes functional defects in glucose-stimulated insulin secretion and insulin content, triggering Chop-mediated apoptotic pathways. Genetic proof of concept studies coupled with RNA-seq reveal that increasing WFS1 confers a functional and a survival advantage to ß-cells under ER stress by increasing insulin gene expression and downregulating the Chop-Trib3 axis, thereby activating Akt pathways. Remarkably, WFS1 and INS levels are reduced in type-2 diabetic (T2DM) islets, suggesting that WFS1 may contribute to T2DM ß-cell pathology. Taken together, this work reveals essential pathways regulated by WFS1 to control ß-cell survival and function primarily through preservation of ER homeostasis.


Assuntos
Células Secretoras de Insulina , Proteínas de Membrana , Animais , Glicemia/análise , Glicemia/metabolismo , Linhagem Celular , Células Cultivadas , Estresse do Retículo Endoplasmático/fisiologia , Humanos , Insulina/análise , Insulina/metabolismo , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos Knockout , Transdução de Sinais/fisiologia , Síndrome de Wolfram
12.
Hum Mol Genet ; 25(9): 1803-13, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26931465

RESUMO

The expansion of the GGGGCC hexanucleotide repeat in the non-coding region of the Chromosome 9 open-reading frame 72 (C9orf72) gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). This genetic alteration leads to the accumulation of five types of poly-dipeptides translated from the GGGGCC hexanucleotide repeat. Among these, poly-proline-arginine (poly-PR) and poly-glycine-arginine (poly-GR) peptides are known to be neurotoxic. However, the mechanisms of neurotoxicity associated with these poly-dipeptides are not clear. A proteomics approach identified a number of interacting proteins with poly-PR peptide, including mRNA-binding proteins, ribosomal proteins, translation initiation factors and translation elongation factors. Immunostaining of brain sections from patients with C9orf72 ALS showed that poly-GR was colocalized with a mRNA-binding protein, hnRNPA1. In vitro translation assays showed that poly-PR and poly-GR peptides made insoluble complexes with mRNA, restrained the access of translation factors to mRNA, and blocked protein translation. Our results demonstrate that impaired protein translation mediated by poly-PR and poly-GR peptides plays a role in neurotoxicity and reveal that the pathways altered by the poly-dipeptides-mRNA complexes are potential therapeutic targets for treatment of C9orf72 FTD/ALS.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/patologia , Dipeptídeos/farmacologia , Neurônios Motores/patologia , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína C9orf72 , Estudos de Casos e Controles , Células Cultivadas , Expansão das Repetições de DNA/efeitos dos fármacos , Expansão das Repetições de DNA/genética , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Humanos , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo
13.
Eur J Immunol ; 47(5): 830-840, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28267207

RESUMO

Type I interferons (IFNs) induce a detrimental response during Listeria monocytogenes (L. monocytogenes) infection. We were interested in identifying mechanisms linking IFN signaling to negative host responses against L. monocytogenes infection. Herein, we found that infection of myeloid cells with L. monocytogenes led to a coordinated induction of type I IFNs and activation of the integrated stress response (ISR). Infected cells did not induce Xbp1 splicing or BiP upregulation, indicating that the unfolded protein response was not triggered. CHOP (Ddit3) gene expression was upregulated during the ISR activation induced by L. monocytogenes. Myeloid cells deficient in either type I IFN signaling or PKR activation had less upregulation of CHOP following infection. CHOP-deficient mice showed lower expression of innate immune cytokines and were more resistant than wild-type counterparts following L. monocytogenes infection. These findings indicate that L. monocytogenes infection induces type I IFNs, which activate the ISR through PKR, which contributes to a detrimental outcome in the infected host.


Assuntos
Interações Hospedeiro-Patógeno , Interferon Tipo I/imunologia , Interferon Tipo I/metabolismo , Listeria monocytogenes/imunologia , Listeriose/imunologia , Células Mieloides/imunologia , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/imunologia , Proteínas de Choque Térmico/metabolismo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/imunologia , Interferon Tipo I/biossíntese , Listeriose/microbiologia , Listeriose/fisiopatologia , Camundongos , Células Mieloides/microbiologia , Fator de Transcrição CHOP/deficiência , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , eIF-2 Quinase/metabolismo
14.
J Bone Miner Metab ; 36(4): 470-477, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28766135

RESUMO

Increasing evidence suggests that osteocalcin is involved in the regulation of glucose homeostasis. However, the relationship between serum osteocalcin levels and risk of incident type 2 diabetes mellitus is not clear. The objective of this study is to investigate whether serum osteocalcin levels are associated with the risk of incident type 2 diabetes mellitus. This study included 1691 Japanese postmenopausal women, 61 incident diabetes cases, and 1630 non-diabetic control subjects in the observation period. Baseline concentrations of intact osteocalcin, HbA1c, bone-specific alkaline phosphatase, adiponectin, leptin, urinary N-telopeptides were assessed. Serum osteocalcin levels were significantly correlated with HbA1c levels among 1691 Japanese postmenopausal women (R = -0.12, P < 0.0001). In receiver operating characteristic curve analysis, the optimal cut-off levels for serum osteocalcin to predict the development of type 2 diabetes mellitus was 6.1 ng/mL. The group with baseline osteocalcin levels <6.1 ng/mL showed a significantly higher risk for developing diabetes than the group with baseline osteocalcin levels >6.1 ng/mL (log-rank test, P  <  0.0001) during the mean observation period (7.6 ± 6.1 years; mean ± SD). In multiple Cox proportional hazard analysis, osteocalcin levels were significantly associated with development of type 2 diabetes mellitus during the observation period. Our results indicate that a decrease in serum osteocalcin levels is associated with future development of type 2 diabetes mellitus independent of conventional risk factors in Japanese postmenopausal women.


Assuntos
Povo Asiático , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Osteocalcina/sangue , Idoso , Feminino , Homeostase , Humanos , Incidência , Japão/epidemiologia , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Análise Multivariada , Pós-Menopausa/sangue , Modelos de Riscos Proporcionais , Fatores de Risco
15.
J Bone Miner Metab ; 36(6): 734-740, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29236162

RESUMO

Decline of body weight with aging is a major risk factor for frailty, osteoporosis and fracture, suggesting that treatment for osteoporosis may affect body composition. Recently, we have shown that 5-year treatment with raloxifene prevented age-related weight loss, suggesting some other drugs for osteoporosis may also prevent a decrease in body weight with aging. The present study aimed to identify the relationship between bisphosphonate treatment and body composition markers. We measured bone mineral density (BMD), body composition, and bone remodeling markers in 551 Japanese postmenopausal women with bisphosphonate treatment, which included risedronate or alendronate treatment (BP-treatment group; N = 193) and without treatment by any osteoporosis drug (no-treatment group; N = 358) for 4-7 years (mean observation periods; 5.5 years) and analyzed the relationship of these with BMD, body mass index (BMI), body weight, and biochemical markers. The mean (SD) age of the participants was 68.6 (9.8) years in the BP-treatment group and 63.7 (10.6) years in the no-treatment group. Percent changes in body weight and BMI were significantly different between the BP-treatment and no-treatment groups (P < 0.01 and P < 0.01, respectively). In multiple linear regression analysis, bisphosphonate treatment was a significant independent determinant of percent changes in body weight and BMI (P < 0.01 and P = 0.01, respectively). Long-term use of bisphosphonates prevented reductions in BMI and body weight, usually observed in elderly women. Our results suggest that bisphosphonate treatment not only reduces the risk for incident osteoporotic fractures but also for frailty in the elderly.


Assuntos
Povo Asiático , Difosfonatos/farmacologia , Pós-Menopausa/fisiologia , Redução de Peso , Idoso , Alendronato/farmacologia , Biomarcadores/metabolismo , Composição Corporal/efeitos dos fármacos , Índice de Massa Corporal , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Feminino , Humanos , Modelos Lineares , Pessoa de Meia-Idade , Pós-Menopausa/efeitos dos fármacos , Ácido Risedrônico/farmacologia , Fatores de Risco , Redução de Peso/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 112(40): E5496-502, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26324934

RESUMO

Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.


Assuntos
Vesículas Extracelulares/imunologia , Células Secretoras de Insulina/imunologia , Insulina/imunologia , Fagócitos/imunologia , Linfócitos T/imunologia , Adulto , Animais , Apresentação de Antígeno/imunologia , Cálcio/metabolismo , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/imunologia , Células Cultivadas , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Chaperona BiP do Retículo Endoplasmático , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/ultraestrutura , Feminino , Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Proteínas de Choque Térmico/genética , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/ultraestrutura , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Microscopia de Fluorescência por Excitação Multifotônica , Fagócitos/metabolismo , Fagócitos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Linfócitos T/metabolismo , Fator de Transcrição CHOP/genética
17.
Hum Mutat ; 38(7): 764-777, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28432734

RESUMO

We developed a variant database for diabetes syndrome genes, using the Leiden Open Variation Database platform, containing observed phenotypes matched to the genetic variations. We populated it with 628 published disease-associated variants (December 2016) for: WFS1 (n = 309), CISD2 (n = 3), ALMS1 (n = 268), and SLC19A2 (n = 48) for Wolfram type 1, Wolfram type 2, Alström, and Thiamine-responsive megaloblastic anemia syndromes, respectively; and included 23 previously unpublished novel germline variants in WFS1 and 17 variants in ALMS1. We then investigated genotype-phenotype relations for the WFS1 gene. The presence of biallelic loss-of-function variants predicted Wolfram syndrome defined by insulin-dependent diabetes and optic atrophy, with a sensitivity of 79% (95% CI 75%-83%) and specificity of 92% (83%-97%). The presence of minor loss-of-function variants in WFS1 predicted isolated diabetes, isolated deafness, or isolated congenital cataracts without development of the full syndrome (sensitivity 100% [93%-100%]; specificity 78% [73%-82%]). The ability to provide a prognostic prediction based on genotype will lead to improvements in patient care and counseling. The development of the database as a repository for monogenic diabetes gene variants will allow prognostic predictions for other diabetes syndromes as next-generation sequencing expands the repertoire of genotypes and phenotypes. The database is publicly available online at https://lovd.euro-wabb.org.


Assuntos
Anemia Megaloblástica/genética , Bases de Dados Genéticas , Diabetes Mellitus/genética , Perda Auditiva Neurossensorial/genética , Deficiência de Tiamina/congênito , Síndrome de Wolfram/genética , Adolescente , Adulto , Criança , Pré-Escolar , Éxons , Saúde da Família , Feminino , Estudos de Associação Genética , Variação Genética , Genótipo , Homozigoto , Humanos , Masculino , Fenótipo , Prognóstico , Sensibilidade e Especificidade , Deficiência de Tiamina/genética , Adulto Jovem
18.
J Biol Chem ; 291(12): 6146-57, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792861

RESUMO

The transcription factor, X-box-binding protein-1 (XBP1), controls the development and maintenance of the endoplasmic reticulum (ER) in multiple secretory cell lineages. We show here that Hepatocyte Nuclear Factor 4α (HNF4α) directly induces XBP1 expression. Mutations in HNF4α cause Mature-Onset Diabetes of the Young I (MODYI), a subset of diabetes characterized by diminished GSIS. In mouse models, cell lines, and ex vivo islets, using dominant negative and human- disease-allele point mutants or knock-out and knockdown models, we show that disruption of HNF4α caused decreased expression of XBP1 and reduced cellular ER networks. GSIS depends on ER Ca(2+) signaling; we show that diminished XBP1 and/or HNF4α in ß-cells led to impaired ER Ca(2+) homeostasis. Restoring XBP1 expression was sufficient to completely rescue GSIS in HNF4α-deficient ß-cells. Our findings uncover a transcriptional relationship between HNF4α and Xbp1 with potentially broader implications about MODYI and the importance of transcription factor signaling in the regulation of secretion.


Assuntos
Proteínas de Ligação a DNA/genética , Fator 4 Nuclear de Hepatócito/fisiologia , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Glucose/fisiologia , Células HEK293 , Homeostase , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
19.
Proc Natl Acad Sci U S A ; 111(49): E5292-301, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422446

RESUMO

Wolfram syndrome is a genetic disorder characterized by diabetes and neurodegeneration and considered as an endoplasmic reticulum (ER) disease. Despite the underlying importance of ER dysfunction in Wolfram syndrome and the identification of two causative genes, Wolfram syndrome 1 (WFS1) and Wolfram syndrome 2 (WFS2), a molecular mechanism linking the ER to death of neurons and ß cells has not been elucidated. Here we implicate calpain 2 in the mechanism of cell death in Wolfram syndrome. Calpain 2 is negatively regulated by WFS2, and elevated activation of calpain 2 by WFS2-knockdown correlates with cell death. Calpain activation is also induced by high cytosolic calcium mediated by the loss of function of WFS1. Calpain hyperactivation is observed in the WFS1 knockout mouse as well as in neural progenitor cells derived from induced pluripotent stem (iPS) cells of Wolfram syndrome patients. A small-scale small-molecule screen targeting ER calcium homeostasis reveals that dantrolene can prevent cell death in neural progenitor cells derived from Wolfram syndrome iPS cells. Our results demonstrate that calpain and the pathway leading its activation provides potential therapeutic targets for Wolfram syndrome and other ER diseases.


Assuntos
Cálcio/metabolismo , Calpaína/metabolismo , Células-Tronco Neurais/citologia , Síndrome de Wolfram/terapia , Adolescente , Adulto , Animais , Morte Celular , Linhagem Celular , Criança , Dantroleno/farmacologia , Retículo Endoplasmático/patologia , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Recém-Nascido , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mutação , Ligação Proteica , Ratos , Síndrome de Wolfram/genética
20.
Proc Natl Acad Sci U S A ; 111(22): E2319-28, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843127

RESUMO

Insulin resistance, hyperinsulinemia, and hyperproinsulinemia occur early in the pathogenesis of type 2 diabetes (T2D). Elevated levels of proinsulin and proinsulin intermediates are markers of ß-cell dysfunction and are strongly associated with development of T2D in humans. However, the mechanism(s) underlying ß-cell dysfunction leading to hyperproinsulinemia is poorly understood. Here, we show that disruption of insulin receptor (IR) expression in ß cells has a direct impact on the expression of the convertase enzyme carboxypeptidase E (CPE) by inhibition of the eukaryotic translation initiation factor 4 gamma 1 translation initiation complex scaffolding protein that is mediated by the key transcription factors pancreatic and duodenal homeobox 1 and sterol regulatory element-binding protein 1, together leading to poor proinsulin processing. Reexpression of IR or restoring CPE expression each independently reverses the phenotype. Our results reveal the identity of key players that establish a previously unknown link between insulin signaling, translation initiation, and proinsulin processing, and provide previously unidentified mechanistic insight into the development of hyperproinsulinemia in insulin-resistant states.


Assuntos
Carboxipeptidase H/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Células Secretoras de Insulina/fisiologia , Insulina/metabolismo , Animais , Carboxipeptidase H/genética , Células Cultivadas , Diabetes Mellitus Tipo 2/genética , Estresse do Retículo Endoplasmático/fisiologia , Fator de Iniciação Eucariótico 4G/genética , Estudo de Associação Genômica Ampla , Proteínas de Homeodomínio/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Biossíntese de Proteínas/fisiologia , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Transdução de Sinais/fisiologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA