Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 43(1): 111-6, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25619255

RESUMO

Understanding how actin filaments are nucleated, polymerized and disassembled in close proximity to cell membranes is an area of growing interest. Protrusion of the plasma membrane is required for cell motility, whereas inward curvature or invagination is required for endocytic events. These morphological changes in membrane are often associated with rearrangements of actin, but how the many actin-binding proteins of eukaryotes function in a co-ordinated way to generate the required responses is still not well understood. Identification and analysis of proteins that function at the interface between the plasma membrane and actin-regulatory networks is central to increasing our knowledge of the mechanisms required to transduce the force of actin polymerization to changes in membrane morphology. The Ysc84/SH3yl1 proteins have not been extensively studied, but work in both yeast and mammalian cells indicate that these proteins function at the hub of networks integrating regulation of filamentous actin (F-actin) with changes in membrane morphology.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas dos Microfilamentos/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/química , Sequência Conservada , Humanos , Proteínas de Membrana , Proteínas dos Microfilamentos/química , Dados de Sequência Molecular , Ligação Proteica , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/química
2.
PLoS One ; 11(9): e0163177, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27637067

RESUMO

Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Endocitose , Ligação Proteica , Saccharomyces cerevisiae/metabolismo
3.
PLoS One ; 10(8): e0136732, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26312755

RESUMO

During endocytosis in S. cerevisiae, actin polymerization is proposed to provide the driving force for invagination against the effects of turgor pressure. In previous studies, Ysc84 was demonstrated to bind actin through a conserved N-terminal domain. However, full length Ysc84 could only bind actin when its C-terminal SH3 domain also bound to the yeast WASP homologue Las17. Live cell-imaging has revealed that Ysc84 localizes to endocytic sites after Las17/WASP but before other known actin binding proteins, suggesting it is likely to function at an early stage of membrane invagination. While there are homologues of Ysc84 in other organisms, including its human homologue SH3yl-1, little is known of its mode of interaction with actin or how this interaction affects actin filament dynamics. Here we identify key residues involved both in Ysc84 actin and lipid binding, and demonstrate that its actin binding activity is negatively regulated by PI(4,5)P2. Ysc84 mutants defective in their lipid or actin-binding interaction were characterized in vivo. The abilities of Ysc84 to bind Las17 through its C-terminal SH3 domain, or to actin and lipid through the N-terminal domain were all shown to be essential in order to rescue temperature sensitive growth in a strain requiring YSC84 expression. Live cell imaging in strains with fluorescently tagged endocytic reporter proteins revealed distinct phenotypes for the mutants indicating the importance of these interactions for regulating key stages of endocytosis.


Assuntos
Actinas/metabolismo , Endocitose/fisiologia , Proteínas dos Microfilamentos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Sítios de Ligação , Regulação Fúngica da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Metabolismo dos Lipídeos , Proteínas dos Microfilamentos/genética , Mutação , Fosfatidilinositóis/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína da Síndrome de Wiskott-Aldrich/metabolismo
4.
Curr Biol ; 23(3): 196-203, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23290554

RESUMO

BACKGROUND: Actin nucleation is the key rate-limiting step in actin polymerization, and tight regulation of this process is critical to ensure that actin filaments form only at specific regions of the cell. Las17 is the primary activator of Arp2/3-driven actin nucleation in yeast and is required for membrane invagination during endocytosis. Its mammalian homolog, WASP, has also been studied extensively as an activator of Arp2/3-driven actin polymerization. In both Las17 and WASP, actin nucleation activity is attributed to an ability to bind actin through a WH2 domain and to bind Arp2/3 through an acidic region. The central region of both Las17 and WASP is rich in proline residues and is generally considered to bind to SH3-domain-containing proteins. RESULTS: We have identified a novel actin-binding activity in the polyproline domain of both yeast Las17 and mammalian WASP. The polyproline domain of Las17 is also able to nucleate actin filaments independently of Arp2/3. Mutational analysis reveals that proline residues are required for this nucleation activity and that the binding site on actin maps to a region distinct from those used by other nucleation activities. In vivo analysis of yeast strains expressing las17 mutated in the WH2 domain, one of its proline motifs, or both shows additive defects in actin organization and endocytosis, with the proline mutant conferring more severe phenotypes than the WH2 mutant. CONCLUSIONS: Our data demonstrate a new actin-binding and nucleation mechanism in Las17/WASP that is required for its function in actin regulation during endocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Endocitose , Polimerização , Saccharomyces cerevisiae , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA