Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Nano Lett ; 21(2): 921-930, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33179498

RESUMO

Information recovery from incomplete measurements, typically performed by a numerical means, is beneficial in a variety of classical and quantum signal processing. Random and sparse sampling with nanophotonic and light scattering approaches has received attention to overcome the hardware limitations of conventional spectrometers and hyperspectral imagers but requires high-precision nanofabrications and bulky media. We report a simple spectral information processing scheme in which light transport through an Anderson-localized medium serves as an entropy source for compressive sampling directly in the frequency domain. As implied by the "lustrous" reflection originating from the exquisite multilayered nanostructures, a pearl (or mother-of-pearl) allows us to exploit the spatial and spectral intensity fluctuations originating from strong light localization for extracting salient spectral information with a compact and thin form factor. Pearl-inspired light localization in low-dimensional structures can offer an alternative of spectral information processing by hybridizing digital and physical properties at a material level.


Assuntos
Fenômenos Físicos
2.
Opt Express ; 28(19): 27615-27627, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988052

RESUMO

It is widely discussed in the literature that a problem of reduction of thermal noise of mid-wave and long-wave infrared (MWIR and LWIR) cameras and focal plane arrays (FPAs) can be solved by using light-concentrating structures. The idea is to reduce the area and, consequently, the thermal noise of photodetectors, while still providing a good collection of photons on photodetector mesas that can help to increase the operating temperature of FPAs. It is shown that this approach can be realized using microconical Si light concentrators with (111) oriented sidewalls, which can be mass-produced by anisotropic wet etching of Si (100) wafers. The design is performed by numerical modeling in a mesoscale regime when the microcones are sufficiently large (several MWIR wavelengths) to resonantly trap photons, but still too small to apply geometrical optics or other simplified approaches. Three methods of integration Si microcone arrays with the focal plane arrays are proposed and studied: (i) inverted microcones fabricated in a Si slab, which can be heterogeneously integrated with the front illuminated FPA photodetectors made from high quantum efficiency materials to provide resonant power enhancement factors (PEF) up to 10 with angle-of-view (AOV) up to 10°; (ii) inverted microcones, which can be monolithically integrated with metal-Si Schottky barrier photodetectors to provide resonant PEFs up to 25 and AOVs up to 30° for both polarizations of incident plane waves; and iii) regular microcones, which can be monolithically integrated with near-surface photodetectors to provide a non-resonant power concentration on compact photodetectors with large AOVs. It is demonstrated that inverted microcones allow the realization of multispectral imaging with ∼100 nm bands and large AOVs for both polarizations. In contrast, the regular microcones operate similar to single-pass optical components (such as dielectric microspheres), producing sharply focused photonic nanojets.

3.
Nano Lett ; 19(8): 5796-5805, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31348661

RESUMO

Guided manipulation of light through periodic nanoarrays of three-dimensional (3D) metal-dielectric patterns provides remarkable opportunities to harness light in a way that cannot be obtained with conventional optics yet its practical implementation remains hindered by a lack of effective methodology. Here we report a novel 3D nanoassembly method that enables deterministic integration of quasi-3D plasmonic nanoarrays with a foreign substrate composed of arbitrary materials and structures. This method is versatile to arrange a variety of types of metal-dielectric composite nanoarrays in lateral and vertical configurations, providing a route to generate heterogeneous material compositions, complex device layouts, and tailored functionalities. Experimental, computational, and theoretical studies reveal the essential design features of this approach and, taken together with implementation of automated equipment, provide a technical guidance for large-scale manufacturability. Pilot assembly of specifically engineered quasi-3D plasmonic nanoarrays with a model hybrid pixel detector for deterministic enhancement of the detection performances demonstrates the utility of this method.

4.
Nano Lett ; 19(1): 158-164, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30484322

RESUMO

Ultrashort bunches of electrons, emitted from solid surfaces through excitation by ultrashort laser pulses, are an essential ingredient in advanced X-ray sources, and ultrafast electron diffraction and spectroscopy. Multiphoton photoemission using a noble metal as the photocathode material is typically used but more brightness is desired. Artificially structured metal photocathodes have been shown to enhance optical absorption via surface plasmon resonance but such an approach severely reduces the damage threshold in addition to requiring state-of-the-art facilities for photocathode fabrication. Here, we report ultrafast photoelectron emission from sidewalls of aligned single-wall carbon nanotubes. We utilized strong exciton resonances inherent in this prototypical one-dimensional material, and its excellent thermal conductivity and mechanical rigidity leading to a high damage threshold. We obtained unambiguous evidence for resonance-enhanced multiphoton photoemission processes with definite power-law behaviors. In addition, we observed strong polarization dependence and ultrashort photoelectron response time, both of which can be quantitatively explained by our model. These results firmly establish aligned single-wall carbon nanotube films as novel and promising ultrafast photocathode material.

5.
J Am Chem Soc ; 141(20): 8078-8082, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31050406

RESUMO

Development of light-driven functional materials capable of displaying reversible properties is currently a vibrant frontier from both scientific and technological points of view. Here a new visible-light-driven chiral molecular switch is synthesized and characterized. To the best of our knowledge, this is the first example of a chiral molecular switch in which the visible-light-driven azobenzene motif is directly linked to an axially chiral scaffold through a C-C bond. The chiral molecular switch exhibits trans-to- cis photoisomerization upon 530 nm irradiation and cis-to- trans isomerization upon 450 nm irradiation. The switch can thus be photoisomerized in both directions using visible light of different wavelengths, a promising attribute for device applications. It was found that this relatively rigid molecular switch exhibited a high helical twisting power (HTP) in liquid crystal hosts and a large change of HTP value upon photoisomerization. We achieved dynamic reflection tuning across the visible spectrum through incorporation into a self-organized helical superstructure, i.e., a cholesteric liquid crystal. We also demonstrated patterned photodisplays reflecting red, green, and blue circularly polarized light using these cholesteric films. Phototunable color displays were fabricated by selective light irradiation where the information can be reversibly hidden by applying an electric field and restored by applying either a mechanical force or an electric field of higher voltage.

6.
Chemistry ; 25(6): 1369-1378, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30076632

RESUMO

Owing to their dynamic attributes, non-covalent supramolecular interactions have enabled a new paradigm in the design and fabrication of multifunctional material systems with programmable properties, performances, and reconfigurable traits. Recently, the "halogen bond" has become an enticing supramolecular synthetic tool that displays a plethora of promising and advantageous characteristics. Consequently, this versatile and dynamic non-covalent interaction has been extensively harnessed in various fields such as crystal engineering, self-assembly, materials science, polymer chemistry, biochemistry, medicinal chemistry and nanotechnology. In recent years, halogen bonding has emerged as a tunable supramolecular synthetic tool in the design of functional liquid-crystalline materials with adjustable phases and properties. In this Concept article, the use of halogen bond in the field of stimuli-responsive smart soft materials, that is, liquid crystals is discussed. The design, synthesis and characterization of molecular and macromolecular liquid crystalline materials are described and the modulation of their properties has been emphasized. The power of halogen bonding in offering a large variety of functional liquid crystalline materials from readily accessible mesomorphic and non-mesomorphic complementary building blocks is highlighted. The article concludes with a perspective on the challenges and opportunities in this emerging endeavor towards the realization of enabling and elegant dynamic functional materials.

7.
Nano Lett ; 17(11): 7102-7109, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-29072915

RESUMO

Conventional metallic mirrors flip the spin of a circularly polarized wave upon normal incidence by inverting the direction of the propagation vector. Altering or maintaining the spin state of light waves carrying data is a critical need to be met at the brink of photonic information processing. In this work, we report a chiral metamaterial mirror that strongly absorbs a circularly polarized wave of one spin state and reflects that of the opposite spin in a manner conserving the circular polarization. A circular dichroic response in reflection as large as ∼0.5 is experimentally observed in a near-infrared wavelength band. By imaging a fabricated pattern composed of the enantiomeric unit cells, we directly visualize the two key features of our engineered meta-mirrors, namely the chiral-selective absorption and the polarization preservation upon reflection. Beyond the linear regime, the chiral resonances enhance light-matter interaction under circularly polarized excitation, greatly boosting the ability of the metamaterial to perform chiral-selective signal generation and optical imaging in the nonlinear regime. Chiral meta-mirrors, exhibiting giant chiroptical responses and spin-selective near-field enhancement, hold great promise for applications in polarization sensitive electro-optical information processing and biosensing.

8.
Angew Chem Int Ed Engl ; 57(6): 1627-1631, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29285875

RESUMO

Supramolecular approaches toward the fabrication of functional materials and systems have been an enabling endeavor. Recently, halogen bonding has been harnessed as a promising supramolecular tool. Herein we report the synthesis and characterization of a novel halogen-bonded light-driven axially chiral molecular switch. The photoactive halogen-bonded chiral switch is able to induce a self-organized, tunable helical superstructure, that is, cholesteric liquid crystal (CLC), when doped into an achiral liquid crystal (LC) host. The halogen-bonded switch as a chiral dopant has a high helical twisting power (HTP) and shows a large change of its HTP upon photoisomerization. This light-driven dynamic modulation enables reversible selective reflection color tuning across the entire visible spectrum. The chiral switch also displays a temperature-dependent HTP change that enables thermally driven red, green, and blue (RGB) reflection colors in the self-organized helical superstructure.

9.
Opt Express ; 25(25): 31174-31185, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245794

RESUMO

One of the trends in design of mid-wave infrared (MWIR) focal plane arrays (FPAs) consists in reduction of the pixel sizes which allows increasing the resolution and decreasing the dark currents of FPAs. To keep high light collection efficiency and to combine it with large angle-of-view (AOV) of FPAs, in this work we propose to use photonic jets produced by the dielectric microspheres for focusing and highly efficient coupling light into individual photodetector mesas. In this approach, each pixel of FPA is integrated with the appropriately designed, fixed and properly aligned microsphere. The tasks consist in developing technology of integration of microspheres with pixels on a massive scale and in developing designs of corresponding structures. We propose to use air suction through a microhole array for assembling ordered arrays of microspheres. We demonstrate that this technology allows obtaining large-scale arrays containing thousands of microspheres with ~1% defect rate which represents a clear advantage over the best results obtained by the techniques of directed self-assembly. We optimized the designs of such FPAs integrated with microspheres for achieving maximal angle of view (AOV) as a function of the index of refraction and diameter of the microspheres. Using simplified two-dimensional finite difference time domain (FDTD) modeling we designed structures where the microspheres are partly-immersed in a layer of photoresist or slightly truncated by using controllable temperature melting effects. Compared to the standard microlens arrays, our designs provide up to an order of magnitude higher AOVs reaching ~8° for back-illuminated and ~20° for front-illuminated structures.

10.
Opt Express ; 25(6): 6725-6731, 2017 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-28381016

RESUMO

A polycrystalline 1.5% Ho: YAG fiber with a diameter of 31 µm was prepared. Surface roughness from grain boundary grooving was reduced by polishing, which decreased the fiber scattering coefficient from 76 m-1 to 35 m-1. Lasing tests were done on this fiber with a SF57 Schott glass cladding. Lasing was confirmed by spectrum narrowing with threshold pump power lower than 500 mW and a slope efficiency of 7%. To our knowledge, this is the first lasing demonstration from a small diameter polycrystalline ceramic fiber.

11.
Nano Lett ; 15(3): 1836-42, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25646978

RESUMO

Metal nanoparticle assemblies are promising materials for nanophotonic applications due to novel linear and nonlinear optical properties arising from their plasmon modes. However, scalable fabrication approaches that provide both precision nano- and macroarchitectures, and performance commensurate with design and model predictions, have been limiting. Herein, we demonstrate controlled and efficient nanofocusing of the fundamental and second harmonic frequencies of incident linearly and circularly polarized light using reduced symmetry gold nanoparticle dimers formed by surface-directed assembly of colloidal nanoparticles. Large ordered arrays (>100) of these C∞v heterodimers (ratio of radii R1/R2 = 150 nm/50 nm = 3; gap distance l = 1 ± 0.5 nm) exhibit second harmonic generation and structure-dependent chiro-optic activity with the circular dichroism ratio of individual heterodimers varying less than 20% across the array, demonstrating precision and uniformity at a large scale. These nonlinear optical properties were mediated by interparticle plasmon coupling. Additionally, the versatility of the fabrication is demonstrated on a variety of substrates including flexible polymers. Numerical simulations guide architecture design as well as validating the experimental results, thus confirming the ability to optimize second harmonic yield and induce chiro-optical responses for compact sensors, optical modulators, and tunable light sources by rational design and fabrication of the nanostructures.

12.
Opt Express ; 23(19): 24484-96, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406653

RESUMO

Super-resolution microscopy by microspheres emerged as a simple and broadband imaging technique; however, the mechanisms of imaging are debated in the literature. Furthermore, the resolution values were estimated based on semi-quantitative criteria. The primary goals of this work are threefold: i) to quantify the spatial resolution provided by this method, ii) to compare the resolution of nanoplasmonic structures formed by different metals, and iii) to understand the imaging provided by microfibers. To this end, arrays of Au and Al nanoplasmonic dimers with very similar geometry were imaged using confocal laser scanning microscopy at λ = 405 nm through high-index (n~1.9-2.2) liquid-immersed BaTiO3 microspheres and through etched silica microfibers. We developed a treatment of super-resolved images in label-free microscopy based on using point-spread functions with subdiffraction-limited widths. It is applicable to objects with arbitrary shapes and can be viewed as an integral form of the super-resolution quantification widely accepted in fluorescent microscopy. In the case of imaging through microspheres, the resolution ~λ/6-λ/7 is demonstrated for Au and Al nanoplasmonic arrays. In the case of imaging through microfibers, the resolution ~λ/6 with magnification M~2.1 is demonstrated in the direction perpendicular to the fiber with hundreds of times larger field-of-view in comparison to microspheres.

13.
Chemphyschem ; 16(9): 1852-6, 2015 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-26097118

RESUMO

Stimuli-directed alignment control of liquid crystals (LCs) with desired molecular orientation is currently in the limelight for the development of smart functional materials and devices. Here, photoresponsive azo thiol (AzoSH) was grafted onto gold nanoparticles (GNPs). The resulting hybrid GNPs were able to homogeneously mix with a commercially available nematic LC host, as evidenced by Cryo-TEM. Interestingly, the LC nanocomposites were found to undergo reversible alignment transition upon light irradiation as a consequence of the trans-cis photoisomerization of the azo groups on the GNP surface. LC molecules in either planar or bare glass cells were able to change their alignment to vertical upon UV irradiation, while the vertically aligned LC molecules returned to the planar or random orientation under visible irradiation. Neither the azo thiol molecules nor the unfunctionalized GNPs alone promoted the alignment of the LC molecules in the system upon light irradiation. The photoinduced vertical alignment without applied electric or magnetic field was very stable over time and with respect to temperature. Furthermore, an optically switchable device based on the photostimulated reversible alignment control of LCs was demonstrated.

14.
Opt Express ; 22(24): 30161-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25606946

RESUMO

We present experiments and analysis on enhanced transmission due to dielectric layer deposited on a metal film perforated with two-dimensional periodic array of subwavelength holes. The Si3N4 overlayer is applied on the perforated gold film (PGF) fabricated on GaAs substrate in order to boost the transmission of light at the surface plasmon polariton (SPP) resonance wavelengths in the mid- and long-wave IR regions, which is used as the antireflection (AR) coating layer between two dissimilar media (air and PGF/GaAs). It is experimentally shown that the transmission through the perforated gold film with 1.8 µm (2.0 µm) pitch at the first-order (second-order) SPP resonance wavelengths can be increased up to 83% (110%) by using a 750 nm (550 nm) thick Si3N4 layer. The SPP resonance leads to a dispersive resonant effective permeability (µeff ≠ 1) and thereby the refractive index matching condition for the conventional AR coating on the surface of a dielectric material cannot be applied to the resonant PGF structure. We develop and demonstrate the concept of AR condition based on the effective parameters of PGF. In addition, the maximum transmission (zero reflection) condition is analyzed numerically by using a three-layer model and a transfer matrix method is employed to determine the total reflection and transmission. The numerically calculated total reflection agrees very well with the reflection obtained by 3D full electromagnetic simulations of the entire structure. Destructive interference conditions for amplitude and phase to get zero reflection are well satisfied.


Assuntos
Luz , Ressonância de Plasmônio de Superfície , Impedância Elétrica , Ouro/química , Modelos Teóricos , Análise Numérica Assistida por Computador , Compostos de Silício/química , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Chemistry ; 20(49): 16286-92, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25313838

RESUMO

Three rationally designed axially chiral diarylethene switches were synthesized and their application as chiral dopants for phototunable cholesteric liquid crystal devices was investigated. Design of these molecules was based on the combination of photochromic dithienylcyclopentene core with bridged binaphthyl units as chiral precursors. Aromatic groups were introduced to the molecules at 6,6'-positions of binaphthyls through a Suzuki-Miyaura coupling reaction. Their helical twisting powers (HTPs) are significantly higher than those of the known chiral diarylethenes reported as chiral dopants so far. Photocyclization of these molecules upon light irradiation brought out dramatic variation in HTPs between different states. The primary colors, red, green, and blue, were obtained in reflection on light irradiation and with thermal stability. Moreover, a multi-switchable photodisplay was demonstrated using one of these chiral molecular switches.

16.
Sci Rep ; 14(1): 2050, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267462

RESUMO

Linear gratings polarizers provide remarkable potential to customize the polarization properties and tailor device functionality via dimensional tuning of configurations. Here, we extensively investigate the polarization properties of single- and double-layer linear grating, mainly focusing on self-aligned bilayer linear grating (SABLG), serving as a wire grid polarizer in the mid-wavelength infrared (MWIR) region. Computational analyses revealed the polarization properties of SABLG, highlighting enhancement in TM transmission and reduction in TE transmission compared to single-layer linear gratings (SLG) due to optical cavity effects. As a result, the extinction ratio is enhanced by approximately 2724-fold in wavelength 3-6 µm. Furthermore, integrating the specially designed SABLG with an MWIR InAs/GaSb Type-II Superlattice (T2SL) photodetector yields a significantly enhanced spectral responsivity. The TM-spectral responsivity of SABLG is enhanced by around twofold than the bare device. The simulation methodology and analytical analysis presented herein provide a versatile route for designing optimized polarimetric structures integrated into infrared imaging devices, offering superior capabilities to resolve linear polarization signatures.

17.
ACS Nano ; 18(4): 3187-3198, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38230651

RESUMO

Metasurfaces, optics made from subwavelength-scale nanostructures, have been limited to millimeter-sizes by the scaling challenge of producing vast numbers of precisely engineered elements over a large area. In this study, we demonstrate an all-glass 100 mm diameter metasurface lens (metalens) comprising 18.7 billion nanostructures that operates in the visible spectrum with a fast f-number (f/1.5, NA = 0.32) using deep-ultraviolet (DUV) projection lithography. Our work overcomes the exposure area constraints of lithography tools and demonstrates that large metasurfaces are commercially feasible. Additionally, we investigate the impact of various fabrication errors on the imaging quality of the metalens, several of which are specific to such large area metasurfaces. We demonstrate direct astronomical imaging of the Sun, the Moon, and emission nebulae at visible wavelengths and validate the robustness of such metasurfaces under extreme environmental thermal swings for space applications.

18.
Opt Express ; 21(25): 31138-54, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514688

RESUMO

We analyze the resonant electromagnetic response of sub-wavelength plasmonic dimers formed by two silver strips separated by a thin dielectric spacer and embedded in a uniform dielectric media. We demonstrate that the off-resonant electric and resonant, geometric shape-leveraged, magnetic polarizabilities of the dimer element can be designed to have close absolute values in a certain spectral range, resulting in a predominantly unidirectional scattering of the incident field due to pronounced magneto-electric interference. Switching between forward and backward directionality can be achieved with a single element by changing the excitation wavelength, with the scattering direction defined by the relative phases of the polarizabilities. We extend the analysis to some periodic configurations, including the specific case of a perforated metal film, and discuss the differences between the observed unidirectional scattering and the extraordinary transmission effect. The unidirectional response can be preserved and enhanced with periodic arrays of dimers and can find applications in nanoantenna devices, integrated optic circuits, sensors with nanoparticles, photovoltaic systems, or perfect absorbers; while the option of switching between forward and backward unidirectional scattering may create interesting possibilities for manipulating optical pressure forces.

19.
Opt Express ; 21(4): 4709-16, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23482003

RESUMO

This paper is focused on analyzing the impact of a two-dimensional metal hole array structure integrated to the back-illuminated quantum dots-in-a-well (DWELL) infrared photodetectors. The metal hole array consisting of subwavelength-circular holes penetrating gold layer (2D-Au-CHA) provides the enhanced responsivity of DWELL infrared photodetector at certain wavelengths. The performance of 2D-Au-CHA is investigated by calculating the absorption of active layer in the DWELL structure using a finite integration technique. Simulation results show that the performance of the DWELL focal plane array (FPA) is improved by enhancing the coupling to active layer via local field engineering resulting from a surface plasmon polariton mode and a guided Fabry-Perot mode. Simulation method accomplished in this paper provides a generalized approach to optimize the design of any type of couplers integrated to infrared photodetectors. Experimental results demonstrate the enhanced signal-to-noise ratio by the 2D-Au-CHA integrated FPA as compared to the DWELL FPA. A comparison between the experiment and the simulation shows a good agreement.


Assuntos
Desenho Assistido por Computador , Ouro/química , Iluminação/instrumentação , Nanopartículas Metálicas/química , Fotometria/instrumentação , Pontos Quânticos , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos
20.
Angew Chem Int Ed Engl ; 52(51): 13703-7, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24150899

RESUMO

A good turn: Three compounds that bear two axially chiral bridged binaphthyl units were developed as photodynamic chiral dopants for nematic liquid crystals. For compounds with suitable bridge lengths, a change in the dihedral angle induced a switch of the binaphthyl units from the cisoid to the transoid form upon UV irradiation, which led to an inversion of the handedness of the helices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA