Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892177

RESUMO

Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 Escherichia coli, lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.


Assuntos
Doença de Parkinson , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/química , alfa-Sinucleína/isolamento & purificação , alfa-Sinucleína/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Concentração Osmolar , Reprodutibilidade dos Testes , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Angew Chem Int Ed Engl ; 59(23): 8864-8867, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32154633

RESUMO

Reaction of carbene-stabilized disilicon (1) with the lithium-based dithiolene radical (2. ) affords the first dianionic silicon tris(dithiolene) complex (3). Notably, the formation of 3 represents the unprecedented utilization of carbene-stabilized disilicon (1) as a silicon-transfer agent. The nature of 3 was probed by multinuclear NMR spectroscopy, single-crystal X-ray diffraction, and DFT computations.

3.
Microbiology (Reading) ; 163(6): 866-877, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28640743

RESUMO

Escherichia coli lacking the glucose phosphotransferase system (PTS), mannose PTS and glucokinase are supposedly unable to grow on glucose as the sole carbon source (Curtis SJ, Epstein W. J Bacteriol 1975;122:1189-1199). We report that W ptsG manZ glk (ALS1406) grows slowly on glucose in media containing glucose with a second carbon source: ALS1406 metabolizes glucose after that other carbon source, including arabinose, fructose, glycerol, succinate or xylose, is exhausted. Galactose is an exception to this rule, as ALS1406 simultaneously consumes both galactose and glucose. The ability of ALS1406 to metabolize glucose in a xylose-glucose mixture was unchanged by an additional knockout in any single gene involved in carbohydrate transport and utilization, including agp (periplasmic glucose-1-phosphatase), galP (galactose permease), xylA (xylose isomerase), alsK (allose kinase), crr (glucose PTS enzyme IIA), galK (galactose kinase), mak (mannokinase), malE (maltose transporter), malX (maltose PTS enzyme IIBC), mglB (methyl-galactose transporter subunit), nagE (N-acetyl glucosamine PTS enzyme IICBA), nanK (N-acetyl mannosamine kinase) or pgm (phosphoglucose mutase). Glucose metabolism was only blocked by the deletion of two metabolic genes, pgi (phosphoglucose isomerase) and zwf (glucose-6-phosphate 1-dehydrogenase), which prevents the entry of glucose-6-phosphate into the pentose phosphate and Embden-Meyerhof-Parnas pathways. Carbon-limited steady-state studies demonstrated that xylose must be sub-saturating for glucose to be metabolized, while nitrogen-limited studies showed that xylose is partly converted to glucose when xylose is in excess. Under transient conditions, ALS1406 converts almost 25 % (mass) xylose into glucose as a result of reversible transketolase and transaldolase and the re-entry of carbon into the pentose phosphate pathway via glucose-6-phosphate 1-dehydrogenase.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Arabinose/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Frutose/metabolismo , Glicólise , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mutação , Via de Pentose Fosfato , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Ácido Succínico/metabolismo , Xilose/metabolismo
4.
Proteins ; 83(6): 1137-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857636

RESUMO

In Pseudomonas aeruginosa, the algH gene regulates the cellular concentrations of a number of enzymes and the production of several virulence factors, and is suggested to serve a global regulatory function. The precise mechanism by which the algH gene product, the AlgH protein, functions is unknown. The same is true for AlgH family members from other bacteria. In order to lay the groundwork for understanding the physical underpinnings of AlgH function, we examined the structure and physical properties of AlgH in solution. Under reducing conditions, results of NMR, electrophoretic mobility, and sedimentation equilibrium experiments indicate AlgH is predominantly monomeric and monodisperse in solution. Under nonreducing conditions intra and intermolecular disulfide bonds form, the latter promoting AlgH oligomerization. The high-resolution solution structure of AlgH reveals alpha/beta-sandwich architecture fashioned from ten beta strands and seven alpha helices. Comparison with available structures of orthologues indicates conservation of overall structural topology. The region of the protein most strongly conserved structurally also shows the highest amino acid sequence conservation and, as revealed by hydrogen-deuterium exchange studies, is also the most stable. In this region, evolutionary trace analysis identifies two clusters of amino acid residues with the highest evolutionary importance relative to all other AlgH residues. These frame a partially solvent exposed shallow hydrophobic cleft, perhaps identifying a site for intermolecular interactions. The results establish a physical foundation for understanding the structure and function of AlgH and AlgH family proteins and should be of general importance for further investigations of these and related proteins.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução
5.
Appl Environ Microbiol ; 81(10): 3387-94, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746993

RESUMO

Escherichia coli that is unable to metabolize d-glucose (with knockouts in ptsG, manZ, and glk) accumulates a small amount of d-glucose (yield of about 0.01 g/g) during growth on the pentoses d-xylose or l-arabinose as a sole carbon source. Additional knockouts in the zwf and pfkA genes, encoding, respectively, d-glucose-6-phosphate 1-dehydrogenase and 6-phosphofructokinase I (E. coli MEC143), increased accumulation to greater than 1 g/liter d-glucose and 100 mg/liter d-mannose from 5 g/liter d-xylose or l-arabinose. Knockouts of other genes associated with interconversions of d-glucose-phosphates demonstrate that d-glucose is formed primarily by the dephosphorylation of d-glucose-6-phosphate. Under controlled batch conditions with 20 g/liter d-xylose, MEC143 generated 4.4 g/liter d-glucose and 0.6 g/liter d-mannose. The results establish a direct link between pentoses and hexoses and provide a novel strategy to increase carbon backbone length from five to six carbons by directing flux through the pentose phosphate pathway.


Assuntos
Arabinose/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Xilose/metabolismo , Escherichia coli/enzimologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fermentação , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Manose/metabolismo , Engenharia Metabólica , Via de Pentose Fosfato , Fosfofrutoquinase-1/genética , Fosfofrutoquinase-1/metabolismo
6.
J Am Chem Soc ; 136(36): 12560-3, 2014 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-25073017

RESUMO

Research on the one-electron reduced analogue of NO, namely nitroxyl (HNO/NO(-)), has revealed distinguishing properties regarding its utility as a therapeutic. However, the fleeting nature of HNO requires the design of donor molecules. Metal nitrosyl (MNO) complexes could serve as potential HNO donors. The synthesis, spectroscopic/structural characterization, and HNO donor properties of a {CoNO}(8) complex in a pyrrole/imine ligand frame are reported. The {CoNO}(8) complex [Co(LN4(PhCl))(NO)] (1) does not react with established HNO targets such as Fe(III) hemes or Ph3P. However, in the presence of stoichiometric H(+) 1 behaves as an HNO donor. Complex 1 readily reacts with [Fe(TPP)Cl] or Ph3P to afford the {FeNO}(7) porphyrin or Ph3P═O/Ph3P═NH, respectively. In the absence of an HNO target, the {Co(NO)2}(10) dinitrosyl (3) is the end product. Complex 1 also reacts with O2 to yield the corresponding Co(III)-η(1)-ONO2 (2) nitrato analogue. This report is the first to suggest an HNO donor role for {CoNO}(8) with biotargets such as Fe(III)-porphyrins.


Assuntos
Cobalto/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Compostos Organometálicos/química , Prótons , Modelos Moleculares , Estrutura Molecular
7.
Nat Commun ; 13(1): 7151, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418330

RESUMO

Nature only samples a small fraction of the sequence space that can fold into stable proteins. Furthermore, small structural variations in a single fold, sometimes only a few amino acids, can define a protein's molecular function. Hence, to design proteins with novel functionalities, such as molecular recognition, methods to control and sample shape diversity are necessary. To explore this space, we developed and experimentally validated a computational platform that can design a wide variety of small protein folds while sampling shape diversity. We designed and evaluated stability of about 30,000 de novo protein designs of eight different folds. Among these designs, about 6,200 stable proteins were identified, including some predicted to have a first-of-its-kind minimalized thioredoxin fold. Obtained data revealed protein folding rules for structural features such as helix-connecting loops. Beyond serving as a resource for protein engineering, this massive and diverse dataset also provides training data for machine learning. We developed an accurate classifier to predict the stability of our designed proteins. The methods and the wide range of protein shapes provide a basis for designing new protein functions without compromising stability.


Assuntos
Engenharia de Proteínas , Dobramento de Proteína , Aminoácidos , Aprendizado de Máquina
8.
Biochemistry ; 49(39): 8512-9, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20809561

RESUMO

Cry11Ba produced by Bacillus thuringiensis subsp. jegathesan is an active toxin for larvae of the mosquito Anopheles gambiae. A 106-kDa aminopeptidase N (APN), called AgAPN2, was previously identified as a Cry11Ba receptor in A. gambiae. A 70-kDa fragment of AgAPN2 expressed in Escherichia coli binds Cry11Ba with high affinity (K(d) = 6.4 nM) and inhibits Cry11Ba activity by 98% in bioassays [Zhang et al. (2008) Biochemistry 47, 11263-11272]. To identify regions involved in toxicity, we truncated the 70-kDa APN fragment into peptides of 28- and 30-kDa ta and tb, respectively, and tested their abilities to mediate toxicity and bind Cry11Ba. While AgAPN2ta reduced Cry11Ba toxicity by 85%, AgAPN2tb showed a significant enhancement effect on Cry11Ba toxicity. The purified peptides showed evidence of structural folding and bound the same site(s) on Cry11Ba with high affinity. The inhibitory AgAPN2ta blocked Cry11Ba binding to brush border membrane vesicles (BBMV) of A. gambiae whereas the toxicity enhancing AgAPN2tb increased Cry11Ba binding on BBMV. A deletion at the N-terminus ((336)S-P(420)) of AgAPN2ta significantly reduced AgAPN2ta binding to Cry11Ba and its inhibitory effect. Deletion of the central region ((676)I-W(760)) of AgAPN2tb eliminated its increased toxin binding and toxicity enhancement effect without affecting Cry11Ba binding. A "bridge" model is proposed for AgAPN2tb action whereby the peptide binds Cry11Ba and vectors it to sites on the larval midgut.


Assuntos
Anopheles/enzimologia , Anopheles/microbiologia , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/toxicidade , Antígenos CD13/química , Antígenos CD13/metabolismo , Animais , Toxinas Bacterianas/antagonistas & inibidores , Toxinas Bacterianas/metabolismo , Larva/microbiologia , Larva/fisiologia , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica
9.
Biochemistry ; 49(29): 6143-54, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20545305

RESUMO

The AsiA protein is a T4 bacteriophage early gene product that regulates transcription of host and viral genes. Monomeric AsiA binds tightly to the sigma(70) subunit of Escherichia coli RNA polymerase, thereby inhibiting transcription from bacterial promoters and phage early promoters and coactivating transcription from phage middle promoters. Results of structural studies have identified amino acids at the protomer-protomer interface in dimeric AsiA and at the monomeric AsiA-sigma(70) interface and demonstrated substantial overlap in the sets of residues that comprise each. Here we evaluate the contributions of individual interfacial amino acid side chains to protomer-protomer affinity in AsiA homodimers, to monomeric AsiA affinity for sigma(70), and to AsiA function in transcription. Sedimentation equilibrium, dynamic light scattering, electrophoretic mobility shift, and transcription activity measurements were used to assess affinity and function of site-specific AsiA mutants. Alanine substitutions for solvent-inaccessible residues positioned centrally in the protomer-protomer interface of the AsiA homodimer, V14, I17, and I40, resulted in the largest changes in free energy of dimer association, whereas alanine substitutions at other interfacial positions had little effect. These residues also contribute significantly to AsiA-dependent regulation of RNA polymerase activity, as do additional residues positioned at the periphery of the interface (K20 and F21). Notably, the relative contributions of a given amino acid side chain to RNA polymerase inhibition and activation (MotA-independent) by AsiA are very similar in most cases. The mainstay for intermolecular affinity and AsiA function appears to be I17. Our results define the core interfacial residues of AsiA, establish roles for many of the interfacial amino acids, are in agreement with the tenets underlying protein-protein interactions and interfaces, and will be beneficial for a general, comprehensive understanding of the mechanistic underpinnings of bacterial RNA polymerase regulation.


Assuntos
Bacteriófago T4/metabolismo , Proteínas Virais/química , Sequência de Aminoácidos , Bacteriófago T4/genética , Dicroísmo Circular , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Regulação Viral da Expressão Gênica , Luz , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Multimerização Proteica , Espalhamento de Radiação , Fator sigma/antagonistas & inibidores , Fator sigma/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
Structure ; 26(5): 677-678, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29719236

RESUMO

Many aspects of the sophisticated mechanism of sodium channel regulation by Ca2+ and calmodulin remain unresolved and controversial. In this issue of Structure, Johnson et al. (2018) provide compelling structural and functional evidence clarifying considerably how calmodulin engages the inactivation gate of the sodium channel and the consequences for regulation.


Assuntos
Calmodulina , Canais de Sódio , Humanos
11.
J Mol Biol ; 326(3): 679-90, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12581632

RESUMO

Bacteriophage T4 AsiA is a homodimeric protein that orchestrates a switch from the host and early viral transcription to middle viral transcription by binding to the sigma(70) subunit of Escherichia coli RNA polymerase holoenzyme (Esigma(70)) and preventing promoter complex formation on most E.coli and early T4 promoters. In addition, Esigma(70)AsiA, but not Esigma(70), is a substrate of transcription activation by T4-encoded DNA-binding protein MotA, a co-activator of transcription from middle viral promoters. The molecular determinants of sigma(70)-AsiA interaction necessary for transcription inhibition reside in the sigma(70) conserved region 4.2, which recognizes the -35 promoter consensus element. The molecular determinants of sigma(70)-AsiA interaction necessary for MotA-dependent transcription activation have not been identified. Here, we show that in the absence of sigma(70) region 4.2, AsiA interacts with sigma(70) conserved region 4.1 and activates transcription in a MotA-independent manner. Further, we show that the AsiA dimer must dissociate to interact with either region 4.2 or region 4.1 of sigma(70). We propose that MotA may co-activate transcription by restricting AsiA binding to sigma(70) region 4.1.


Assuntos
Bacteriófago T4/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Fator sigma/metabolismo , Transcrição Gênica , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Pegada de DNA , RNA Polimerases Dirigidas por DNA/química , Dimerização , Corantes Fluorescentes , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Fator sigma/química , Espectrometria de Fluorescência , Proteínas Virais/química
12.
Toxins (Basel) ; 7(7): 2598-614, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26184312

RESUMO

Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, thus reducing production of reactive oxygen species (ROS) used for host defense in activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues in CaM, important for interactions between CaM and its binding partners, can be oxidized by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. EF activation shows high resistance to oxidative modifications in CaM. An intact structure in the C-terminal region of oxidized CaM is sufficient for major EF activation despite altered secondary structure in the N-terminal region associated with Met oxidation. The secondary structures of CaM-mut were determined and described in previous studies from our group. Thus, excess cAMP production and the associated impairment of host defence may be afforded even under oxidative conditions in activated neutrophils.


Assuntos
Adenilil Ciclases/metabolismo , Antígenos de Bactérias/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Calmodulina/metabolismo , Adenilil Ciclases/genética , Substituição de Aminoácidos , Antígenos de Bactérias/genética , Toxinas Bacterianas/genética , Calmodulina/química , Calmodulina/genética , AMP Cíclico/metabolismo , Escherichia coli/genética , Leucina/química , Leucina/genética , Leucina/metabolismo , Metionina/química , Metionina/genética , Metionina/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Estrutura Terciária de Proteína
13.
Biochem Pharmacol ; 93(2): 196-209, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25462816

RESUMO

Membranous adenylyl cyclase 1 (AC1) is associated with memory and learning. AC1 is activated by the eukaryotic Ca(2+)-sensor calmodulin (CaM), which contains nine methionine residues (Met) important for CaM-target interactions. During ageing, Met residues are oxidized to (S)- and (R)-methionine sulfoxide (MetSO) by reactive oxygen species arising from an age-related oxidative stress. We examined how oxidation by H2O2 of Met in CaM regulates CaM activation of AC1. We employed a series of thirteen mutant CaM proteins never assessed before in a single study, where leucine is substituted for Met, in order to analyze the effects of oxidation of specific Met. CaM activation of AC1 is regulated by oxidation of all of the C-terminal Met in CaM, and by two N-terminal Met, M36 and M51. CaM with all Met oxidized is unable to activate AC1. Activity is fully restored by the combined catalytic activities of methionine sulfoxide reductases A and B (MsrA and B), which catalyze reduction of the (S)- and (R)-MetSO stereoisomers. A small change in secondary structure is observed in wild-type CaM upon oxidation of all nine Met, but no significant secondary structure changes occur in the mutant proteins when Met residues are oxidized by H2O2, suggesting that localized polarity, flexibility and structural changes promote the functional changes accompanying oxidation. The results signify that AC1 catalytic activity can be delicately adjusted by mediating CaM activation of AC1 by reversible Met oxidation in CaM. The results are important for memory, learning and possible therapeutic routes for regulating AC1.


Assuntos
Adenilil Ciclases/metabolismo , Calmodulina/metabolismo , Membrana Celular/metabolismo , Metionina/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Galinhas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Humanos , Peróxido de Hidrogênio/farmacologia , Insetos , Oxirredução/efeitos dos fármacos , Células Sf9
14.
Biochemistry ; 46(13): 4045-54, 2007 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-17343368

RESUMO

Calmodulin (CaM) binds to a domain near the C-terminus of the plasma membrane Ca2+-ATPase (PMCA), causing the release of this domain and relief of its autoinhibitory function. We investigated the kinetics of dissociation and binding of Ca2+-CaM with a 28-residue peptide [C28W(1b)] corresponding to the CaM-binding domain of isoform 1b of PMCA. CaM was labeled with a fluorescent probe on either the N-terminal domain at residue 34 or the C-terminal domain at residue 110. Formation of complexes of CaM with C28W(1b) results in a decrease in the fluorescence yield of the fluorophore, allowing the kinetics of dissociation or binding to be detected. Using a maximum entropy method, we determined the minimum number and magnitudes of rate constants required to fit the data. Comparison of the fluorescence changes for CaM labeled on the C-terminal or N-terminal domain suggests sequential and ordered binding of the C-terminal and N-terminal domains of CaM with C28W(1b). For dissociation of C28W(1b) from CaM labeled on the N-terminal domain, we observed three time constants, indicating the presence of two intermediate states in the dissociation pathway. However, for CaM labeled on the C-terminal domain, we observed only two time constants, suggesting that the fluorescence label on the C-terminal domain was not sensitive to one of the kinetic steps. The results were modeled by a kinetic mechanism in which an initial complex forms upon binding of the C-terminal domain of CaM to C28W(1b), followed by binding of the N-terminal domain, and then formation of a tight binding complex. Oxidation of methionine residues in CaM resulted in significant perturbations to the binding kinetics. The rate of formation of a tight binding complex was reduced, consistent with the poorer effectiveness of oxidized CaM in activating the Ca2+ pump.


Assuntos
Calmodulina/metabolismo , Metionina/química , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Membrana Celular/enzimologia , Entropia , Corantes Fluorescentes/química , Cinética , Maleimidas/química , Modelos Químicos , Oxirredução , Estrutura Terciária de Proteína
15.
Protein Expr Purif ; 43(1): 57-64, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16084397

RESUMO

The most common cause of mortality among cystic fibrosis sufferers is infection by antibiotic resistant strains of Pseudomonas aeruginosa. Means to control these strains continue to be an important goal. An integral component of the ability of many of these strains to defy antibiotic therapies is the protection afforded by the mucoexopolysaccharide alginate. Production of alginate by P. aeruginosa is tightly regulated at the transcriptional level. AlgH, a putative transcriptional regulator, is involved in regulating alginate biosynthesis as well as nucleoside diphosphate kinase activity and succinyl coenzyme A synthetase activity in P. aeruginosa. Sequence homologues are found in many bacterial species. Here, we describe a method for high level overexpression and high yield/high purity production of AlgH for biophysical and functional studies. The algH gene was cloned and AlgH was overexpressed in Escherichia coli using a commercially available vector with an inducible T7 promoter. We purified the recombinantly produced protein using a rapid classical purification scheme. The yield of purified protein, either isotopically labeled for NMR studies or unlabeled, is excellent (30-37 mg of purified protein per liter of minimal media culture), as is the purity (>95% pure). Analysis of the secondary structure using circular dichroism and NMR indicates that the protein is comprised of both beta-sheet and alpha-helical secondary structural elements. Heteronuclear NMR spectra indicate that AlgH is a monodisperse, folded globular protein. This rapid, high yield, and high purity method for AlgH production will permit further biophysical characterization of this protein including high resolution structural studies.


Assuntos
Escherichia coli/genética , Pseudomonas aeruginosa/metabolismo , Fatores de Transcrição , Alginatos , Sequência de Bases , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Ácido Glucurônico/biossíntese , Ácidos Hexurônicos , Humanos , Espectrometria de Massas , Dados de Sequência Molecular , Plasmídeos/genética , Pseudomonas aeruginosa/genética , Succinato-CoA Ligases , Fatores de Transcrição/biossíntese , Fatores de Transcrição/química , Fatores de Transcrição/isolamento & purificação , Regulação para Cima
16.
Biochemistry ; 44(27): 9486-96, 2005 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-15996103

RESUMO

The C-terminus of calmodulin (CaM) functions as a sensor of oxidative stress, with oxidation of methionine 144 and 145 inducing a nonproductive association of the oxidized CaM with the plasma membrane Ca(2+)-ATPase (PMCA) and other target proteins to downregulate cellular metabolism. To better understand the structural underpinnings and mechanism of this switch, we have engineered a CaM mutant (CaM-L7) that permits the site-specific oxidation of M144 and M145, and we have used NMR spectroscopy to identify structural changes in CaM and CaM-L7 and changes in the interactions between CaM-L7 and the CaM-binding sequence of the PMCA (C28W) due to methionine oxidation. In CaM and CaM-L7, methionine oxidation results in nominal secondary structural changes, but chemical shift changes and line broadening in NMR spectra indicate significant tertiary structural changes. For CaM-L7 bound to C28W, main chain and side chain chemical shift perturbations indicate that oxidation of M144 and M145 leads to large tertiary structural changes in the C-terminal hydrophobic pocket involving residues that comprise the interface with C28W. Smaller changes in the N-terminal domain also involving residues that interact with C28W are observed, as are changes in the central linker region. At the C-terminal helix, (1)H(alpha), (13)C(alpha), and (13)CO chemical shift changes indicate decreased helical character, with a complete loss of helicity for M144 and M145. Using (13)C-filtered, (13)C-edited NMR experiments, dramatic changes in intermolecular contacts between residues in the C-terminal domain of CaM-L7 and C28W accompany oxidation of M144 and M145, with an essentially complete loss of contacts between C28W and M144 and M145. We propose that the inability of CaM to fully activate the PMCA after methionine oxidation originates in a reduced helical propensity for M144 and M145, and results primarily from a global rearrangement of the tertiary structure of the C-terminal globular domain that substantially alters the interaction of this domain with the PMCA.


Assuntos
Calmodulina/metabolismo , Metionina/metabolismo , Fragmentos de Peptídeos/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , ATPases Transportadoras de Cálcio/metabolismo , Calmodulina/genética , Galinhas , Cisteína/genética , Leucina/genética , Metionina/genética , Dados de Sequência Molecular , Oxirredução , Ligação Proteica/genética , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Sulfóxidos/metabolismo , Triptofano/genética
17.
J Am Chem Soc ; 127(7): 2085-93, 2005 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-15713084

RESUMO

Ca2+, "a signal of life and death", controls numerous cellular processes through interactions with proteins. An effective approach to understanding the role of Ca2+ is the design of a Ca2+-binding protein with predicted structural and functional properties. To design de novo Ca2+-binding sites in proteins is challenging due to the high coordination numbers and the incorporation of charged ligand residues, in addition to Ca2+-induced conformational change. Here, we demonstrate the successful design of a Ca2+-binding site in the non-Ca2+-binding cell adhesion protein CD2. This designed protein, Ca.CD2, exhibits selectivity for Ca2+ versus other di- and monovalent cations. In addition, La3+ (Kd 5.0 microM) and Tb3+ (Kd 6.6 microM) bind to the designed protein somewhat more tightly than does Ca2+ (Kd 1.4 mM). More interestingly, Ca.CD2 retains the native ability to associate with the natural target molecule. The solution structure reveals that Ca.CD2 binds Ca2+ at the intended site with the designed arrangement, which validates our general strategy for designing de novo Ca2+-binding proteins. The structural information also provides a close view of structural determinants that are necessary for a functional protein to accommodate the metal-binding site. This first success in designing Ca2+-binding proteins with desired structural and functional properties opens a new avenue in unveiling key determinants to Ca2+ binding, the mechanism of Ca2+ signaling, and Ca2+-dependent cell adhesion, while avoiding the complexities of the global conformational changes and cooperativity in natural Ca2+-binding proteins. It also represents a major achievement toward designing functional proteins controlled by Ca2+ binding.


Assuntos
Antígenos CD2/química , Proteínas de Ligação ao Cálcio/química , Moléculas de Adesão Celular/química , Animais , Sítios de Ligação , Antígenos CD2/genética , Antígenos CD2/metabolismo , Cálcio/química , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Engenharia de Proteínas , Estrutura Terciária de Proteína , Ratos , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Térbio/química , Térbio/metabolismo
18.
Biochem Biophys Res Commun ; 305(4): 840-5, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12767907

RESUMO

We report that cytochrome b(5) (cyt b(5)) from Musca domestica (house fly) is more thermally stable than all other microsomal (Mc) cytochromes b(5) that have been examined to date. It also exhibits a much higher barrier to equilibration of the two isomeric forms of the protein, which differ by a 180 degrees rotation about the alpha-gamma-meso axis of hemin (ferric heme). In fact, hemin is kinetically trapped in a nearly statistical 1.2:1 ratio of rotational forms in freshly expressed protein. The equilibrium ratio (5.5:1) is established only upon incubation at temperatures above 37 degrees C. House fly Mc cyt b(5) is only the second b-hemoprotein that has been shown to exhibit kinetically trapped hemin at room temperature or above, the first being cyt b(5) from the outer membrane of rat liver mitochondria (rat OM cyt b(5)). Finally, we show that the small excess of one orientational isomer over the other in freshly expressed protein results from selective binding of hemin by the apoprotein, a phenomenon that has not heretofore been established for any apocyt b(5).


Assuntos
Citocromos b5/metabolismo , Hemina/metabolismo , Moscas Domésticas , Sequência de Aminoácidos , Animais , Apoproteínas/metabolismo , Sítios de Ligação , Bovinos , Citocromos b5/química , Temperatura Alta , Cinética , Proteínas Mitocondriais/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência
19.
Protein Expr Purif ; 33(1): 72-9, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14680964

RESUMO

The objective of this work was to produce unlabeled and 15N-labeled EC4 domain protein from E-cadherin for studying its structure and binding properties to other EC domains as well as to E-cadherin peptides. The EC4 domain of E-cadherin was expressed in Escherichia coli from the vector pASK-IBA6 and localized in the periplasmic space of E. coli. This protein contains a Streptag sequence at the N-terminus, and thus was purified using a Strep-Tactin affinity column. However, at high concentrations the 15N-labeled EC4 protein showed an unstable conformation. Conditions for stabilizing the conformation of this protein were evaluated using CD spectroscopy. The CD results showed that this protein has high conformational stability in Tris buffer at pH 6.0 in the presence of 10 mM calcium chloride.


Assuntos
Caderinas/biossíntese , Caderinas/química , Caderinas/genética , Caderinas/isolamento & purificação , Dicroísmo Circular , DNA Complementar/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Modelos Moleculares , Isótopos de Nitrogênio , Ressonância Magnética Nuclear Biomolecular/métodos , Periplasma/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
20.
Protein Expr Purif ; 26(3): 449-54, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12460769

RESUMO

E-cadherin is a cell surface adhesion molecule that is expressed in both epithelial and endothelial tissues. In this study, an improved method for the simple production of the human E-cadherin-derived first repeat E-CAD1 was developed by exporting it into the periplasmic space of Escherichia coli. Localization of the recombinant protein into the periplasm allowed the isolation of E-CAD1 without cell lysis. The N-terminus of E-CAD1 is fused to a streptavidin-derived peptide to allow single-step purification using a Streptag affinity column. Optimal expression in LB medium produced 3.2 mg/L while expression in minimal medium containing 15NH(4)Cl as the sole source of nitrogen produced 4.2 mg/L purified (15)N-labeled E-CAD1. Heteronuclear NMR spectroscopy confirmed that the purified E-CAD1 produced in this manner was correctly folded. The expression and purification protocol for unlabeled and isotopically labeled E-CAD1 permits rapid preparative production of this protein for mechanistic and structural studies.


Assuntos
Caderinas/química , Caderinas/metabolismo , Escherichia coli/genética , Caderinas/genética , Caderinas/isolamento & purificação , Meios de Cultura , Eletroforese em Gel de Poliacrilamida , Escherichia coli/citologia , Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos/química , Periplasma/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA