Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118774, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37619389

RESUMO

Wastewater disposal is a major environmental issue that pollutes water, causing eutrophication, habitat destruction, and economic impact. In Mexico, food-processing effluents pose a huge environmental threat due to their excessive nutrient content and their large volume discharged every year. Some of the most harmful residues are tequila vinasses, nejayote, and cheese whey. Each liter of tequila generates 13-15 L of vinasses, each kilogram of cheese produces approximately 9 kg of cheese whey, and each kilogram of nixtamalized maize results in the production of 2.5-3.3 L of nejayote. A promising strategy to reduce the contamination derived from wastewater is through microalgae-based wastewater treatment. Microalgae have a high adaptability to hostile environments and they can feed on the nutrients in the effluents to grow. Moreover, to increase the viability, profitability, and value of wastewater treatments, a microalgae biorefinery could be proposed. This review will focus on the circular bioeconomy scheme focused on the simultaneous food-processing wastewater treatment and its use to grow microalgae biomass to produce added-value compounds. This strategy allows for the revalorization of wastewater, decreases contamination of water sources, and produces valuable compounds that promote human health such as phycobiliproteins, carotenoids, omega-3 fatty acids, exopolysaccharides, mycosporine-like amino acids, and as a source of clean energy: biodiesel, biogas, and bioethanol.


Assuntos
Microalgas , Águas Residuárias , Humanos , Biodegradação Ambiental , Microalgas/metabolismo , Biomassa , Biocombustíveis
2.
Adv Mater ; 33(35): e2102153, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34278618

RESUMO

3D printing has emerged as an enabling approach in a variety of different fields. However, the bulk volume of printing systems limits the expansion of their applications. In this study, a portable 3D Digital Light Processing (DLP) printer is built based on a smartphone-powered projector and a custom-written smartphone-operated app. Constructs with detailed surface architectures, porous features, or hollow structures, as well as sophisticated tissue analogs, are successfully printed using this platform, by utilizing commercial resins as well as a range of hydrogel-based inks, including poly(ethylene glycol)-diacrylate, gelatin methacryloyl, or allylated gelatin. Moreover, due to the portability of the unique DLP printer, medical implants can be fabricated for point-of-care usage, and cell-laden tissues can be produced in situ, achieving a new milestone for mobile-health technologies. Additionally, the all-in-one printing system described herein enables the integration of the 3D scanning smartphone app to obtain object-derived 3D digital models for subsequent printing. Along with further developments, this portable, modular, and easy-to-use smartphone-enabled DLP printer is anticipated to secure exciting opportunities for applications in resource-limited and point-of-care settings not only in biomedicine but also for home and educational purposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA