Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(22): e2216857120, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37216546

RESUMO

Inositol 1,4,5-trisphosphate receptors (IP3Rs) are one of the two types of tetrameric ion channels that release calcium ion (Ca2+) from the endoplasmic reticulum (ER) into the cytosol. Ca2+ released via IP3Rs is a fundamental second messenger for numerous cell functions. Disturbances in the intracellular redox environment resulting from various diseases and aging interfere with proper calcium signaling, however, the details are unclear. Here, we elucidated the regulatory mechanisms of IP3Rs by protein disulfide isomerase family proteins localized in the ER by focusing on four cysteine residues residing in the ER lumen of IP3Rs. First, we revealed that two of the cysteine residues are essential for functional tetramer formation of IP3Rs. Two other cysteine residues, on the contrary, were revealed to be involved in the regulation of IP3Rs activity; its oxidation by ERp46 and the reduction by ERdj5 caused the activation and the inactivation of IP3Rs activity, respectively. We previously reported that ERdj5 can activate the sarco/endoplasmic reticulum Ca2+-ATPase isoform 2b (SERCA2b) using its reducing activity [Ushioda et al., Proc. Natl. Acad. Sci. U.S.A. 113, E6055-E6063 (2016)]. Thus, we here established that ERdj5 exerts the reciprocal regulatory function for IP3Rs and SERCA2b by sensing the ER luminal Ca2+ concentration, which contributes to the calcium homeostasis in the ER.


Assuntos
Cálcio , Inositol , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Cálcio/metabolismo , Inositol/metabolismo , Cisteína/metabolismo , Retículo Endoplasmático/metabolismo , Sinalização do Cálcio/fisiologia , Oxirredução , Inositol 1,4,5-Trifosfato/metabolismo
2.
J Biol Chem ; 299(11): 105274, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739037

RESUMO

Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality control process that eliminates misfolded proteins from the ER. DnaJ homolog subfamily C member 10 (ERdj5) is a protein disulfide isomerase family member that accelerates ERAD by reducing disulfide bonds of aberrant proteins with the help of an ER-resident chaperone BiP. However, the detailed mechanisms by which ERdj5 acts in concert with BiP are poorly understood. In this study, we reconstituted an in vitro system that monitors ERdj5-mediated reduction of disulfide-linked J-chain oligomers, known to be physiological ERAD substrates. Biochemical analyses using purified proteins revealed that J-chain oligomers were reduced to monomers by ERdj5 in a stepwise manner via trimeric and dimeric intermediates, and BiP synergistically enhanced this action in an ATP-dependent manner. Single-molecule observations of ERdj5-catalyzed J-chain disaggregation using high-speed atomic force microscopy, demonstrated the stochastic release of small J-chain oligomers through repeated actions of ERdj5 on peripheral and flexible regions of large J-chain aggregates. Using systematic mutational analyses, ERAD substrate disaggregation mediated by ERdj5 and BiP was dissected at the molecular level.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Chaperonas Moleculares , Chaperona BiP do Retículo Endoplasmático/química , Chaperona BiP do Retículo Endoplasmático/genética , Chaperona BiP do Retículo Endoplasmático/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Dobramento de Proteína , Células HEK293 , Cadeias J de Imunoglobulina/metabolismo , Domínios Proteicos
3.
Mol Cell ; 41(4): 432-44, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21329881

RESUMO

ER-associated degradation (ERAD) is an ER quality-control process that eliminates terminally misfolded proteins. ERdj5 was recently discovered to be a key ER-resident PDI family member protein that accelerates ERAD by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. We here solved the crystal structure of full-length ERdj5, thereby revealing that ERdj5 contains the N-terminal J domain and six tandem thioredoxin domains that can be divided into the N- and C-terminal clusters. Our systematic biochemical analyses indicated that two thioredoxin domains that constitute the C-terminal cluster form the highly reducing platform that interacts with EDEM1 and reduces EDEM1-recruited substrates, leading to their facilitated degradation. The pulse-chase experiment further provided direct evidence for the sequential movement of an ERAD substrate from calnexin to the downstream EDEM1-ERdj5 complex, and then to the retrotranslocation channel, probably through BiP. We present a detailed molecular view of how ERdj5 mediates ERAD in concert with EDEM1.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Choque Térmico HSP40/química , Chaperonas Moleculares/química , Proteína Dissulfeto Redutase (Glutationa)/química , Animais , Células Cultivadas , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Camundongos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Conformação Proteica , Proteína Dissulfeto Redutase (Glutationa)/metabolismo , Dobramento de Proteína , Transdução de Sinais , Transfecção
4.
Proc Natl Acad Sci U S A ; 113(41): E6055-E6063, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27694578

RESUMO

Calcium ion (Ca2+) is an important second messenger that regulates numerous cellular functions. Intracellular Ca2+ concentration ([Ca2+]i) is strictly controlled by Ca2+ channels and pumps on the endoplasmic reticulum (ER) and plasma membranes. The ER calcium pump, sarco/endoplasmic reticulum calcium ATPase (SERCA), imports Ca2+ from the cytosol into the ER in an ATPase activity-dependent manner. The activity of SERCA2b, the ubiquitous isoform of SERCA, is negatively regulated by disulfide bond formation between two luminal cysteines. Here, we show that ERdj5, a mammalian ER disulfide reductase, which we reported to be involved in the ER-associated degradation of misfolded proteins, activates the pump function of SERCA2b by reducing its luminal disulfide bond. Notably, ERdj5 activated SERCA2b at a lower ER luminal [Ca2+] ([Ca2+]ER), whereas a higher [Ca2+]ER induced ERdj5 to form oligomers that were no longer able to interact with the pump, suggesting [Ca2+]ER-dependent regulation. Binding Ig protein, an ER-resident molecular chaperone, exerted a regulatory role in the oligomerization by binding to the J domain of ERdj5. These results identify ERdj5 as one of the master regulators of ER calcium homeostasis and thus shed light on the importance of cross talk among redox, Ca2+, and protein homeostasis in the ER.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Homeostase , Chaperonas Moleculares/metabolismo , Oxirredução , Animais , Sinalização do Cálcio , Linhagem Celular , Ativação Enzimática , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Humanos , Camundongos , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Ligação Proteica , Multimerização Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética
5.
Anal Biochem ; 520: 22-26, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28048978

RESUMO

Thiol-based redox control is among the most important mechanisms for maintaining cellular redox homeostasis, with essential participation of cysteine thiols of oxidoreductases. To explore cellular redox regulatory networks, direct interactions among active cysteine thiols of oxidoreductases and their targets must be clarified. We applied a recently described thiol-ene crosslinking-based strategy, named divinyl sulfone (DVSF) method, enabling identification of new potential redox relay partners of the cytosolic oxidoreductases thioredoxin (TXN) and thioredoxin domain containing 17 (TXNDC17). Applying multiple methods, including classical substrate-trapping techniques, will increase understanding of redox regulatory mechanisms in cells.


Assuntos
Reagentes de Ligações Cruzadas/química , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Células HEK293 , Humanos , Dados de Sequência Molecular , Oxirredução , Alinhamento de Sequência , Sulfonas/química , Tiorredoxinas/química , Tiorredoxinas/genética
6.
J Biol Chem ; 290(6): 3639-46, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25525267

RESUMO

Chronic liver injury, often caused by alcoholism and viral hepatitis, causes liver fibrosis via the induction of collagen production. In liver fibrosis, hepatic stellate cells (HSCs) are activated and transform into myofibroblasts, which actively produce and secrete collagen into the extracellular matrix. Hsp47 (heat shock protein 47) is a collagen-specific molecular chaperone that is essential for the maturation and secretion of collagen. Here, we used the Cre-LoxP system to disrupt the Hsp47 gene in isolated HSCs from Hsp47 floxed mice. Immature type I procollagen accumulated and partially aggregated in Hsp47-KO HSCs. This accumulation was augmented when autophagy was inhibited, which induced expression of the endoplasmic reticulum (ER) stress-inducible proteins BiP (immunoglobulin heavy chain-binding protein) and Grp94 (94-kDa glucose-regulated protein). The inhibition of autophagy in Hsp47-KO HSCs also induced CHOP (CCAAT/enhancer-binding protein homologous protein), which is an ER stress-induced transcription factor responsible for apoptosis. These data suggest that apoptosis is induced through ER stress by procollagen accumulation in Hsp47-KO HSCs when autophagy is inhibited. Thus, Hsp47 could be a promising therapeutic target in liver fibrosis.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Deleção de Genes , Proteínas de Choque Térmico HSP47/metabolismo , Células Estreladas do Fígado/metabolismo , Animais , Autofagia , Células Cultivadas , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP47/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Pró-Colágeno/metabolismo
7.
BMC Biol ; 13: 2, 2015 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-25575667

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. RESULTS: In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca(2+) concentrations approached those normally found in the ER lumen ([Ca(2+)]K(0.5max) = 190 µM). CONCLUSIONS: Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion.


Assuntos
Cálcio/deficiência , Difusão , Retículo Endoplasmático/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Células COS , Cálcio/metabolismo , Calreticulina/metabolismo , Chlorocebus aethiops , Dissulfetos/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Camundongos , Chaperonas Moleculares/metabolismo , Oxirredução , Ligação Proteica
8.
Cell Rep ; 43(2): 113682, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38330940

RESUMO

ERp18 is an endoplasmic reticulum (ER)-resident thioredoxin (Trx) family protein, similar to cytosolic Trx1. The Trx-like domain occupies a major portion of the whole ERp18 structure, which is postulated to be an ER paralog of cytosolic Trx1. Here, we elucidate that zinc ion (Zn2+) binds ERp18 through its catalytic motif, triggering oligomerization of ERp18 from a monomer to a trimer. While the monomeric ERp18 has disulfide oxidoreductase activity, the trimeric ERp18 acquires scavenger activity for hydrogen peroxide (H2O2) in the ER. Depletion of ERp18 thus causes the accumulation of H2O2, which is produced during the oxidative folding of nascent polypeptides in the ER. ERp18 knockdown in C. elegans without Prx4 and GPx7/8, both of which are also known to have H2O2 scavenging activity in the ER, shortened the lifespan, suggesting that ERp18 may form a primitive and essential H2O2 scavenging system for the maintenance of redox homeostasis in the ER.


Assuntos
Caenorhabditis elegans , Peróxido de Hidrogênio , Animais , Tiorredoxinas , Retículo Endoplasmático , Zinco
9.
Cell Death Dis ; 15(1): 53, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38225221

RESUMO

Chronic metabolic stress paradoxically elicits pro-tumorigenic signals that facilitate cancer stem cell (CSC) development. Therefore, elucidating the metabolic sensing and signaling mechanisms governing cancer cell stemness can provide insights into ameliorating cancer relapse and therapeutic resistance. Here, we provide convincing evidence that chronic metabolic stress triggered by hyaluronan production augments CSC-like traits and chemoresistance by partially impairing nucleotide sugar metabolism, dolichol lipid-linked oligosaccharide (LLO) biosynthesis and N-glycan assembly. Notably, preconditioning with either low-dose tunicamycin or 2-deoxy-D-glucose, which partially interferes with LLO biosynthesis, reproduced the promoting effects of hyaluronan production on CSCs. Multi-omics revealed characteristic changes in N-glycan profiles and Notch signaling activation in cancer cells exposed to mild glycometabolic stress. Restoration of N-glycan assembly with glucosamine and mannose supplementation and Notch signaling blockade attenuated CSC-like properties and further enhanced the therapeutic efficacy of cisplatin. Therefore, our findings uncover a novel mechanism by which tolerable glycometabolic stress boosts cancer cell resilience through altered N-glycosylation and Notch signaling activation.


Assuntos
Ácido Hialurônico , Resiliência Psicológica , Humanos , Glicosilação , Ácido Hialurônico/metabolismo , Recidiva Local de Neoplasia/metabolismo , Polissacarídeos/metabolismo , Suplementos Nutricionais , Células-Tronco Neoplásicas/metabolismo
10.
Cell Stress Chaperones ; 29(1): 21-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38320449

RESUMO

J-domain proteins (JDPs) are the largest family of chaperones in most organisms, but much of how they function within the network of other chaperones and protein quality control machineries is still an enigma. Here, we report on the latest findings related to JDP functions presented at a dedicated JDP workshop in Gdansk, Poland. The report does not include all (details) of what was shared and discussed at the meeting, because some of these original data have not yet been accepted for publication elsewhere or represented still preliminary observations at the time.


Assuntos
Proteínas de Choque Térmico HSP70 , Chaperonas Moleculares , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Polônia , Proteínas de Choque Térmico HSP40/metabolismo
11.
Cell Rep ; 42(7): 112742, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37421625

RESUMO

The endoplasmic reticulum (ER) maintains an oxidative redox environment that is advantageous for the oxidative folding of nascent polypeptides entering the ER. Reductive reactions within the ER are also crucial for maintaining ER homeostasis. However, the mechanism by which electrons are supplied for the reductase activity within the ER remains unknown. Here, we identify ER oxidoreductin-1α (Ero1α) as an electron donor for ERdj5, an ER-resident disulfide reductase. During oxidative folding, Ero1α catalyzes disulfide formation in nascent polypeptides through protein disulfide isomerase (PDI) and then transfers the electrons to molecular oxygen via flavin adenine dinucleotide (FAD), ultimately yielding hydrogen peroxide (H2O2). Besides this canonical electron pathway, we reveal that ERdj5 accepts electrons from specific cysteine pairs in Ero1α, demonstrating that the oxidative folding of nascent polypeptides provides electrons for reductive reactions in the ER. Moreover, this electron transfer pathway also contributes to maintaining ER homeostasis by reducing H2O2 production in the ER.


Assuntos
Elétrons , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Glicoproteínas de Membrana/metabolismo , Oxirredução , Oxirredutases/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Retículo Endoplasmático/metabolismo , Peptídeos/metabolismo , Dissulfetos/metabolismo , Estresse Oxidativo , Dobramento de Proteína
12.
Sci Rep ; 12(1): 7239, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610229

RESUMO

Chinese hamster ovary (CHO) cells are widely used for manufacturing antibody drugs. We attempted to clone a novel high-expression promoter for producing monoclonal antibodies (mAbs) based on transcriptome analysis to enhance the transcriptional abundance of mAb genes. The efficacy of conventional promoters such as CMV and hEF1α decrease in the latter phase of fed-batch cell culture. To overcome this, we screened genes whose expression was maintained or increased throughout the culture period. Since CHO cells have diverse genetic expression depending on the selected clone and culture medium, transcriptome analysis was performed on multiple clones and culture media anticipated to be used in mAb manufacturing. We thus acquired the Hspa5 promoter as a novel high-expression promoter, which uniquely enables mAb productivity per cell to improve late in the culture period. Productivity also improved for various IgG subclasses under Hspa5 promoter control, indicating this promoter's potential universal value for mAb production. Finally, it was suggested that mAb production with this promoter is correlated with the transcription levels of endoplasmic reticulum stress-related genes. Therefore, mAb production utilizing the Hspa5 promoter might be a new method for maintaining protein homeostasis and achieving stable expression of introduced mAb genes during fed-batch culture.


Assuntos
Formação de Anticorpos , Técnicas de Cultura Celular por Lotes , Animais , Anticorpos Monoclonais/genética , Células CHO , Cricetinae , Cricetulus , Meios de Cultura
13.
Sci Rep ; 11(1): 20772, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34728782

RESUMO

The endoplasmic reticulum (ER) is the organelle responsible for the folding of secretory/membrane proteins and acts as a dynamic calcium ion (Ca2+) store involved in various cellular signalling pathways. Previously, we reported that the ER-resident disulfide reductase ERdj5 is involved in the ER-associated degradation (ERAD) of misfolded proteins in the ER and the activation of SERCA2b, a Ca2+ pump on the ER membrane. These results highlighted the importance of the regulation of redox activity in both Ca2+ and protein homeostasis in the ER. Here, we show that the deletion of ERdj5 causes an imbalance in intracellular Ca2+ homeostasis, the activation of Drp1, a cytosolic GTPase involved in mitochondrial fission, and finally the aberrant fragmentation of mitochondria, which affects cell viability as well as phenotype with features of cellular senescence. Thus, ERdj5-mediated regulation of intracellular Ca2+ is essential for the maintenance of mitochondrial homeostasis involved in cellular senescence.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Mitocôndrias/patologia , Isomerases de Dissulfetos de Proteínas/metabolismo , Animais , Degradação Associada com o Retículo Endoplasmático , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Isomerases de Dissulfetos de Proteínas/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-30396882

RESUMO

The endoplasmic reticulum (ER) is a dynamic organelle responsible for many cellular functions in eukaryotic cells. Proper redox conditions in the ER are necessary for the functions of many luminal pathways and the maintenance of homeostasis. The redox environment in the ER is oxidative compared with that of the cytosol, and a network of oxidoreductases centering on the protein disulfide isomerase (PDI)-Ero1α hub complex is constructed for efficient electron transfer. Although these oxidizing environments are advantageous for oxidative folding for protein maturation, electron transfer is strictly controlled by Ero1α structurally and spatially. The ER redox environment shifts to a reductive environment under certain stress conditions. In this review, we focus on the reducing reactions that maintain ER homeostasis and introduce their significance in an oxidative ER environment.


Assuntos
Retículo Endoplasmático/fisiologia , Homeostase/fisiologia , Animais , Regulação da Expressão Gênica/fisiologia , Oxirredução , Dobramento de Proteína
15.
Cell Rep ; 27(4): 1221-1230.e3, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31018135

RESUMO

Sarco/endoplasmic reticulum (ER) Ca2+-ATPase 2b (SERCA2b) is a ubiquitously expressed membrane protein that facilitates Ca2+ uptake from the cytosol to the ER. SERCA2b includes a characteristic 11th transmembrane helix (TM11) followed by a luminal tail, but the structural basis of SERCA regulation by these C-terminal segments remains unclear. Here, we determined the crystal structures of SERCA2b and its C-terminal splicing variant SERCA2a, both in the E1-2Ca2+-adenylyl methylenediphosphonate (AMPPCP) state. Despite discrepancies with the previously reported structural model of SERCA2b, TM11 was found to be located adjacent to TM10 and to interact weakly with a part of the L8/9 loop and the N-terminal end of TM10, thereby inhibiting the SERCA2b catalytic cycle. Accordingly, mutational disruption of the interactions between TM11 and its neighboring residues caused SERCA2b to display SERCA2a-like ATPase activity. We propose that TM11 serves as a key modulator of SERCA2b activity by fine-tuning the intramolecular interactions with other transmembrane regions.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Homeostase , Humanos , Transporte de Íons , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Homologia de Sequência
16.
Cell Stress Chaperones ; 24(1): 7-15, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30478692

RESUMO

Hsp70 chaperone systems are very versatile machines present in nearly all living organisms and in nearly all intracellular compartments. They function in many fundamental processes through their facilitation of protein (re)folding, trafficking, remodeling, disaggregation, and degradation. Hsp70 machines are regulated by co-chaperones. J-domain containing proteins (JDPs) are the largest family of Hsp70 co-chaperones and play a determining role functionally specifying and directing Hsp70 functions. Many features of JDPs are not understood; however, a number of JDP experts gathered at a recent CSSI-sponsored workshop in Gdansk (Poland) to discuss various aspects of J-domain protein function, evolution, and structure. In this report, we present the main findings and the consensus reached to help direct future developments in the field of Hsp70 research.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Animais , Doença , Proteínas de Choque Térmico HSP70/classificação , Humanos , Agregados Proteicos , Domínios Proteicos , Redobramento de Proteína
17.
Front Mol Biosci ; 5: 18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541639

RESUMO

Despite its study since the 1960's, very little is known about the post-translational regulation of the multiple catalytic activities performed by protein disulfide isomerase (PDI), the primary protein folding catalyst of the cell. This work identifies a functional role for the highly conserved CxxC-flanking residues Lys57 and Lys401 of human PDI in vitro. Mutagenesis studies have revealed these residues as modulating the oxidoreductase activity of PDI in a pH-dependent manner. Non-conservative amino acid substitutions resulted in enzyme variants upwards of 7-fold less efficient. This attenuated activity was found to translate into a 2-fold reduction of the rate of electron shuttling between PDI and the intraluminal endoplasmic reticulum oxidase, ERO1α, suggesting a functional significance to oxidative protein folding. In light of this, the possibility of lysine acetylation at residues Lys57 and Lys401 was assessed by in vitro treatment using acetylsalicylic acid (aspirin). A total of 28 acetyllysine residues were identified, including acLys57 and acLys401. The kinetic behavior of the acetylated protein form nearly mimicked that obtained with a K57/401Q double substitution variant providing an indication that acetylation of the active site-flanking lysine residues can act to reversibly modulate PDI activity.

18.
Structure ; 25(6): 846-857.e4, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28479060

RESUMO

ERdj5, composed of an N-terminal J domain followed by six thioredoxin-like domains, is the largest protein disulfide isomerase family member and functions as an ER-localized disulfide reductase that enhances ER-associated degradation (ERAD). Our previous studies indicated that ERdj5 comprises two regions, the N- and C-terminal clusters, separated by a linker loop and with distinct functional roles in ERAD. We here present a new crystal structure of ERdj5 with a largely different cluster arrangement relative to that in the original crystal structure. Single-molecule observation by high-speed atomic force microscopy visualized rapid cluster movement around the flexible linker loop, indicating the highly dynamic nature of ERdj5 in solution. ERdj5 mutants with a fixed-cluster orientation compromised the ERAD enhancement activity, likely because of less-efficient reduction of aberrantly formed disulfide bonds and prevented substrate transfer in the ERdj5-mediated ERAD pathway. We propose a significant role of ERdj5 conformational dynamics in ERAD of disulfide-linked oligomers.


Assuntos
Degradação Associada com o Retículo Endoplasmático/fisiologia , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica , Modelos Moleculares , Chaperonas Moleculares/genética , Mutação , Conformação Proteica
19.
Mol Biol Cell ; 24(20): 3155-63, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23966469

RESUMO

During endoplasmic reticulum (ER)-associated degradation (ERAD), terminally misfolded proteins are retrotranslocated from the ER to the cytosol and degraded by the ubiquitin-proteasome system. Misfolded glycoproteins are recognized by calnexin and transferred to EDEM1, followed by the ER disulfide reductase ERdj5 and the BiP complex. The mechanisms involved in ERAD of nonglycoproteins, however, are poorly understood. Here we show that nonglycoprotein substrates are captured by BiP and then transferred to ERdj5 without going through the calnexin/EDEM1 pathway; after cleavage of disulfide bonds by ERdj5, the nonglycoproteins are transferred to the ERAD scaffold protein SEL1L by the aid of BiP for dislocation into the cytosol. When glucose trimming of the N-glycan groups of the substrates is inhibited, glycoproteins are also targeted to the nonglycoprotein ERAD pathway. These results indicate that two distinct pathways for ERAD of glycoproteins and nonglycoproteins exist in mammalian cells, and these pathways are interchangeable under ER stress conditions.


Assuntos
Estresse do Retículo Endoplasmático/genética , Degradação Associada com o Retículo Endoplasmático/genética , Retículo Endoplasmático/genética , Proteínas de Membrana/metabolismo , Animais , Calnexina/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Degradação Associada com o Retículo Endoplasmático/fisiologia , Glucose/metabolismo , Glicosilação , Células HEK293 , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
20.
Methods Enzymol ; 490: 235-58, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21266254

RESUMO

The endoplasmic reticulum (ER) is an organelle where secretory or membrane proteins are correctly folded with the aid of various molecular chaperones and oxidoreductases. Only correctly folded and assembled proteins are enabled to reach their final destinations, which are called as ER quality control (ERQC) mechanisms. ER-associated degradation (ERAD) is one of the ERQC mechanisms for maintaining the ER homeostasis and facilitates the elimination of misfolded or malfolded proteins accumulated in the ER. ERAD is mainly consisting of three processes: recognition of misfolded proteins for degradation in the ER, retrotranslocation of (possibly) unfolded substrates from the ER to the cytosol through dislocation channel, and their degradation in the cytosol via ubiquitin-protesome system. After briefly mentioned on productive folding of nascent polypeptides in the ER, we here overview the above three processes in ERAD system by highlighting on novel ERAD factors such as EDEM and ERdj5 in mammals and yeasts.


Assuntos
Retículo Endoplasmático/enzimologia , Proteínas de Choque Térmico HSP40/metabolismo , Chaperonas Moleculares/metabolismo , Animais , Dissulfetos/metabolismo , Retículo Endoplasmático/fisiologia , Glicosilação , Proteínas de Choque Térmico HSP40/genética , Humanos , Chaperonas Moleculares/genética , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Estresse Fisiológico/fisiologia , Ubiquitina/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA