RESUMO
We report the case of a 56-year-old man with chronic myeloid leukemia (CML) who developed dasatinib-induced interstitial lung disease (ILD) 7 years after starting dasatinib, a BCR-ABL1 inhibitor. The patient presented with dyspnea. Chest imaging showed diffuse ground-glass opacities. A surgical lung biopsy showed cellular non-specific interstitial pneumonia (NSIP). Corticosteroid treatment ameliorated his condition. Bosutinib, another BCR-ABL1 inhibitor, was successfully re-instituted. The present case and relevant literature suggest that dasatinib-induced ILD can present as NSIP after an extended period, responds to corticosteroids, and is amenable to re-challenge at a lower-dose or with alternative BCR-ABL1 inhibitors.
Assuntos
Dasatinibe/efeitos adversos , Doenças Pulmonares Intersticiais/induzido quimicamente , Inibidores de Proteínas Quinases/efeitos adversos , Dasatinibe/uso terapêutico , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêuticoRESUMO
Ferroptosis is a necrotic form of regulated cell death (RCD) mediated by phospholipid peroxidation in association with free iron-mediated Fenton reactions. Disrupted iron homeostasis resulting in excessive oxidative stress has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we demonstrate the involvement of ferroptosis in COPD pathogenesis. Our in vivo and in vitro models show labile iron accumulation and enhanced lipid peroxidation with concomitant non-apoptotic cell death during cigarette smoke (CS) exposure, which are negatively regulated by GPx4 activity. Treatment with deferoxamine and ferrostatin-1, in addition to GPx4 knockdown, illuminate the role of ferroptosis in CS-treated lung epithelial cells. NCOA4-mediated ferritin selective autophagy (ferritinophagy) is initiated during ferritin degradation in response to CS treatment. CS exposure models, using both GPx4-deficient and overexpressing mice, clarify the pivotal role of GPx4-regulated cell death during COPD. These findings support a role for cigarette smoke-induced ferroptosis in the pathogenesis of COPD.