Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biol Res ; 49: 7, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26830333

RESUMO

BACKGROUND: Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. RESULTS: We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. CONCLUSIONS: Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Cisteína/análogos & derivados , Alho/química , Extratos Vegetais/farmacologia , Análise de Variância , Animais , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cobalto , Cisteína/farmacologia , Citometria de Fluxo , Formazans , Células PC12 , Ratos , Espécies Reativas de Oxigênio/análise , Sais de Tetrazólio
2.
Indian J Biochem Biophys ; 50(6): 562-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24772982

RESUMO

The purification, structural and functional characterization of two different lectins (named Svl-1 and Svl-2) has been reported from the marine sponge Spheciospongia vesparia. Purification procedure includes ammonium sulfate precipitation, combined with chromatography including Octyl-Sepharose-(NH4)SO4 hydrophobic column and DEAE-Toyopearl anion-exchange column using a high performance liquid chromatography. The similarities in function, specificity for saccharides, molecular weight, amino acid content and the N-terminal sequence of two lectins suggest that these proteins are isolectins. Amino acid composition and fluorescence analyses reveal that they contain an intrachain disulfide bridge, which might contribute to their high thermal stability. Furthermore, the purified lectins exhibit antibacterial activity against the gram-negative bacteria Pseudomonas aeruginosa and E. coli, indicating that they may be involved in a recognition strategy and may play a role in the defense response function of the sponge. This is the first report on the isolation of lectins from the S. vesparia. The purified lectins represent a potential possible candidate for future application in the recognition or treatment of cancer cells.


Assuntos
Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Organismos Aquáticos/química , Lectinas/isolamento & purificação , Lectinas/farmacologia , Poríferos/química , Animais , Antibacterianos/química , Bactérias/efeitos dos fármacos , Hemaglutinação/efeitos dos fármacos , Humanos , Lectinas/química , Coelhos , Análise de Sequência , Homologia de Sequência
3.
Biochim Biophys Acta ; 1784(7-8): 1028-36, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18466780

RESUMO

Zeins are the major storage proteins in corn seeds organized in protein bodies located in the endosperm. They are soluble in alcoholic solution and depict a high tendency to aggregation. The Z19 alpha-zein aggregates obtained by heating show a particular and interesting temperature-dependent behavior. This work was aimed at determining not only the effect of temperature on the aggregation behavior, but also the effect of the sulfhydryl groups and disulphide bonds on the thermal aggregation process under non-aqueous conditions. Z19 alpha-zein was chemically modified to obtain different sulfhydryl groups and disulphide-bonds content. Far-UV CD, ANS emission fluorescence, and dynamic light scattering, as well as differential scanning calorimetry, were performed to characterize this protein. Removal of these disulphide-bonds and alkylation of all the sulfhydryl groups in the protein promoted the lowest T(m) of 57.36 degrees C, eliminated aggregation, enhanced protein flexibility, and diminished thermal stability. These results suggest that the disulphide linkage could be the driving force for the Z19 alpha-zein aggregation.


Assuntos
Dissulfetos/química , Compostos de Sulfidrila/química , Zeína/química , Alquilação , Dicroísmo Circular , Conformação Proteica , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrofotometria Ultravioleta
4.
Biochem Biophys Res Commun ; 382(3): 626-30, 2009 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-19303397

RESUMO

It is assumed that amino acid sequence differences in highly homologous enzymes would be found at the peripheral level, subtle changes that would not necessarily affect catalysis. Here, we demonstrate that, using the same set of mutations at the level of the interface loop 3, the activity of a triosephosphate isomerase monomeric enzyme is ten times higher than that of a homologous enzyme with 74% identity and 86% similarity, whereas the activity of the native, dimeric enzymes is essentially the same. This is an example of how the dimeric biological unit evolved to compensate for the intrinsic differences found at the monomeric species level. Biophysical techniques of size exclusion chromatography, dynamic light scattering, X-ray crystallography, fluorescence and circular dichroism, as well as denaturation/renaturation assays with guanidinium hydrochloride and ANS binding, allowed us to fully characterize the properties of the new monomer.


Assuntos
Triose-Fosfato Isomerase/química , Sequência de Aminoácidos/genética , Animais , Catálise , Cristalografia por Raios X , Estabilidade Enzimática/genética , Guanidina/química , Luz , Mutação , Conformação Proteica , Desnaturação Proteica , Espalhamento de Radiação , Triose-Fosfato Isomerase/genética , Trypanosoma cruzi/enzimologia
5.
Protein Sci ; 12(1): 135-42, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493836

RESUMO

High-sensitivity isothermal titration calorimetry was used to characterize the binding of the glycohydrolitic enzyme hen egg-white lysozyme to its natural saccharide inhibitors, chitobiose and chitrotriose. Measurements were done at a pH of 4.7, in the 15 degrees C -45 degrees C temperature range. Using a structural-energetic parameterization derived previously for lectin-carbohydrate associations, both binding enthalpies and entropies for the present systems and for the complex of chitobiose with turkey egg-white lysozyme from the literature were correctly accounted for. These observations suggest that both lysozymes and lectins follow the same structural-energetic behavior in the binding to their ligands. From the analysis of lysozyme data in conjunction with other binding data reported in the literature, an ad hoc parameterization of DeltaCp for protein-carbohydrate complexes was derived for the first time. The novel parameters for both polar and apolar surface areas differed significantly from correlations obtained previously from model compounds and protein-folding data. As DeltaCp is extremely sensitive to changes in solvent structure, this finding indicates that protein-carbohydrate complexes have distinctive hydration properties. According to our analysis, the dehydration of polar groups is the major cause for the observed decrease in DeltaCp, which implies that these groups behave hydrophobically. The contribution of apolar surface areas was found of the expected sign, but their specific weight is much smaller than those obtained in other correlations. This small contribution to DeltaCp is consistent with Lemieux's hypothesis of a low degree of hydration of apolar surfaces on carbohydrates.


Assuntos
Dissacarídeos/química , Dissacarídeos/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Muramidase/química , Muramidase/metabolismo , Trissacarídeos/química , Trissacarídeos/metabolismo , Animais , Calorimetria/métodos , Galinhas , Clara de Ovo , Interações Hidrofóbicas e Hidrofílicas , Muramidase/antagonistas & inibidores , Ligação Proteica , Dobramento de Proteína , Temperatura , Termodinâmica , Água/química
6.
J Biophys ; 2012: 606172, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22899913

RESUMO

Huntington's and Parkinson's diseases are neurodegenerative disorders associated with unusual protein interactions. Although the origin and evolution of these diseases are completely different, characteristic deposits of protein aggregates (huntingtin and α-synuclein resp.), are a common feature in both diseases. After these observations, many studies are performed with both proteins. Some of them try to understand the nature and driving forces of the aggregation process; others try to find a correlation between the genetic and failure in protein function. Finally with the combination of both approaches, it was proposed that possible strategies deal with pathologic aggregation. Unfortunately, if protein aggregation is a cause or a consequence of the neurodegeneration observed in these pathologies, it is still debatable. This paper describes the process of aggregation of two proteins: huntingtin and α synuclein. The characteristics of the aggregation reaction of these proteins have been followed with novel methods both in vivo and in vitro; these studies include both the combination with other proteins and the presence of various chemical compounds. The ultimate goal of this study was to summarize recent findings on protein aggregation and its possible role as a therapeutic target in neurodegenerative diseases and their role in biomaterial science.

7.
Biol. Res ; 49: 1-10, 2016. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-950834

RESUMO

BACKGROUND: Aged garlic extract (AGE) and its main constituent S-allylcysteine (SAC) are natural antioxidants with protective effects against cerebral ischemia or cancer, events that involve hypoxia stress. Cobalt chloride (CoCl2) has been used to mimic hypoxic conditions through the stabilization of the α subunit of hypoxia inducible factor (HIF-1α) and up-regulation of HIF-1α-dependent genes as well as activation of hypoxic conditions such as reactive oxygen species (ROS) generation, loss of mitochondrial membrane potential and apoptosis. The present study was designed to assess the effect of AGE and SAC on the CoCl2-chemical hypoxia model in PC12 cells. RESULTS: We found that CoCl2 induced the stabilization of HIF-1α and its nuclear localization. CoCl2 produced ROS and apoptotic cell death that depended on hypoxia extent. The treatment with AGE and SAC decreased ROS and protected against CoCl2-induced apoptotic cell death which depended on the CoCl2 concentration and incubation time. SAC or AGE decreased the number of cells in the early and late stages of apoptosis. Interestingly, this protective effect was associated with attenuation in HIF-1α stabilization, activity not previously reported for AGE and SAC. CONCLUSIONS: Obtained results show that AGE and SAC decreased apoptotic CoCl2-induced cell death. This protection occurs by affecting the activity of HIF-1α and supports the use of these natural compounds as a therapeutic alternative for hypoxic conditions


Assuntos
Animais , Ratos , Extratos Vegetais/farmacologia , Apoptose/efeitos dos fármacos , Cisteína/análogos & derivados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/efeitos dos fármacos , Alho/química , Antioxidantes/farmacologia , Sais de Tetrazólio , Hipóxia Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Análise de Variância , Células PC12 , Espécies Reativas de Oxigênio/análise , Cobalto , Cisteína/farmacologia , Citometria de Fluxo , Formazans
8.
Biochemistry ; 44(32): 10883-92, 2005 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16086591

RESUMO

The reversible guanidinium hydrochloride-induced unfolding of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was characterized under equilibrium conditions. The catalytic activity was followed as a native homodimeric functional probe. Circular dichroism, intrinsic fluorescence, and size-exclusion chromatography were used as secondary, tertiary, and quaternary structural probes, respectively. The change in ANS fluorescence intensity with increasing denaturant concentrations was also determined. The results show that two stable intermediates exist in the transition from the homodimeric native enzyme to the unfolded monomers: one (N(2*)) is a slightly more expanded, non-native, and active dimer, and the other is a partially expanded monomer (M) that binds ANS. Spectroscopic and activity data were used to reach a thermodynamic characterization. The results indicate that the Gibbs free energies for the partial reactions are 4.5 (N(2) <==> N(2*)), 65.8 (N(2*) <==> 2M), and 17.8 kJ/mol (M <==> U). It appears that TcTIM monomers are more stable than those found for other TIM species (except yeast TIM), where monomer stability is only marginal. These results are compared with those for the guanidinium hydrochloride-induced denaturation of TIM from different species, where despite the functional and three-dimensional similarities, a remarkable heterogeneity exists in the unfolding pathways.


Assuntos
Renaturação Proteica , Triose-Fosfato Isomerase/química , Trypanosoma cruzi/enzimologia , Animais , Guanidina , Desnaturação Proteica , Espectrometria de Fluorescência , Termodinâmica , Triose-Fosfato Isomerase/metabolismo
9.
Arch Biochem Biophys ; 399(2): 117-29, 2002 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-11888197

RESUMO

The unfolding of triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) induced by guanidine hydrochloride (GdnHCl) was characterized. In contrast to other TIMs, where unfolding is a two or three state process, TbTIM showed two intermediates. The solvent exposure of different regions of the protein in the unfolding process was characterized spectroscopically with mutant proteins in which tryptophans (W) were changed to phenlylalanines (F). The midpoints of the transitions measured by circular dichroism, intrinsic fluorescence, and catalytic activity, as well as the increase in 1-aniline 8-naphthalene sulfonate fluorescence, show that the native state was destabilized in the W12F and W12F/W193F mutants, relative to the wild-type enzyme. Using the hydrodynamic profile for the unfolding of a monomeric TbTIM mutant (RMM0-1TIM) measured by size-exclusion chromatography as a standard, we determined the association state of these intermediates: D*, a partially expanded dimer, and M*, a partially expanded monomeric intermediate. High-molecular-weight aggregates were also detected. At concentrations over 2.0 M GdnHCl, the hydrodynamic properties of TbTIM and RMM0-1TIM are the same, suggesting that the dimeric intermediate dissociates and the unfolding proceeds through the denaturation of an expanded monomeric intermediate. The analysis of the denaturation process of the TbTIM mutants suggests a sequence for the gradual exposure of W residues: initially the expansion of the native dimer to form D* affects the environments of W12 and W159. The dissociation of D* to M* and further unfolding of M* to U induces the exposure of W170. The role of protein concentration in the formation of intermediates and aggregates is discussed considering the irreversibility of this unfolding process.


Assuntos
Triose-Fosfato Isomerase/química , Trypanosoma brucei brucei/enzimologia , Triptofano/química , Animais , Catálise , Dicroísmo Circular , Fluorescência , Guanidina/química , Mutagênese Sítio-Dirigida , Desnaturação Proteica , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/química , Triptofano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA