Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 27(10): 3483-3495, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33191573

RESUMO

2-(2'-Hydroxyphenyl)benzazole (HBX) fluorophores are well-known excited-state intramolecular proton transfer (ESIPT) emitters largely studied for their synthetic versatility, photostability, strong solid-state fluorescence and ability to engineer dual emission, thus paving the way to applications as white emitters, ratiometric sensors, and cryptographic dyes. However, they are heavily quenched in solution, due to efficient non-radiative pathways taking place as a consequence of the proton transfer in the excited-state. In this contribution, the nature of the heteroring constitutive of these rigidified HBX dyes was modified and we demonstrate that this simple structural modification triggers major optical changes in terms of emission color, dual emission engineering, and importantly, fluorescent quantum yield. Investigation of the photophysical properties in solution and in the solid state of a series of ethynyl-TIPS extended HBX fluorophores, along with ab initio calculations demonstrate the very promising abilities of these dyes to act as bright dual-state emitters, in both solution (even in protic environments) and solid state.

2.
Chemistry ; 26(44): 10064-10071, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32428299

RESUMO

Fluorescent sensors are a vital research tool, enabling the study of intricate cellular processes in a sensitive manner. The design and synthesis of responsive and targeted probes is necessary to allow such processes to be interrogated in the cellular environment. This remains a challenge, and requires methods for functionalisation of fluorophores with multiple appendages for sensing and targeting groups. Methods to synthesise more structurally complex derivatives of fluorophores will expand their potential scope. Most known 4-amino-1,8-naphthalimides are only functionalised at imide and 4-positions, and structural modifications at additional positions will increase the breadth of their utility as responsive sensors. In this work, methods for the incorporation of a hypoxia sensing group to 4-amino-1,8-naphthalimide were evaluated. An intermediate was developed that allowed us to incorporate a sensing group, targeting group, and ICT donor to the naphthalimide core in a modular fashion. Synthetic strategies for attaching the hypoxia sensing group and how they affected the fluorescence of the naphthalimide were evaluated by photophysical characterisation and time-dependent density functional theory. An extracellular hypoxia probe was then rationally designed that could selectively image the hypoxic and necrotic region of tumour spheroids. Our results demonstrate the versatility of the naphthalimide scaffold and expand its utility. This approach to probe design will enable the flexible, efficient generation of selective, targeted fluorescent sensors for various biological purposes.


Assuntos
1-Naftilamina/análogos & derivados , Corantes Fluorescentes/análise , Corantes Fluorescentes/síntese química , Hipóxia/metabolismo , Naftalimidas/química , Naftalimidas/síntese química , Quinolonas/química , Quinolonas/síntese química , 1-Naftilamina/análise , 1-Naftilamina/síntese química , 1-Naftilamina/química , Linhagem Celular , Corantes Fluorescentes/química , Humanos , Naftalimidas/análise , Quinolonas/análise
3.
Phys Chem Chem Phys ; 21(31): 17400-17409, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31359018

RESUMO

BTImP, 2-(1,3-benzothiazol-2-yl)-4-methoxy-6-(1,4,5-triphenyl-1H-imidazol-2yl)phenol, a compound showing a very unusual excited state intramolecular proton transfer (ESIPT) process, is theoretically studied. Composed of two ESIPT centres, BTImP presents a switching of the ESIPT from one moiety to the other by acidic stimulation, allowing emission of a large panel of colours. In this work, the switching mechanism and its impact on the structural and optical properties are investigated with time-dependent density functional theory (TD-DFT) and post Hartree-Fock methods [ADC(2) and CC2] including the environment by considering bulk solvation effects and the important impact of the counter-ion (BF4-, ClO4-, and Cl-). A special attention is paid to locate all relevant conformers in both the ground and excited states. The possibility of having a doubly protonated structure is investigated as well. Eventually, in connection with experimental data (NMR, X-ray, and fluorescence spectra) a specific structure could be attributed to each emission colour.

4.
Phys Chem Chem Phys ; 21(5): 2307-2317, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30607419

RESUMO

The unusual emission spectrum of 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTP) is investigated. The complexity of the emission spectrum of this dye is due to the presence of two excited-state intramolecular proton transfer (ESIPT) sites that give rise to three non-equivalent tautomers. The different maxima were experimentally attributed to the initial double enol form, the single ESIPT enol-keto tautomer, and the double ESIPT structure. Our simulations, based on Time Dependent Density Functional Theory (TD-DFT) and post Hartree-Fock methods [ADC(2) and CC2] coupled to different schemes to include the solvent polarisation response, are able to reproduce the key experimental outcomes. Moreover, we prove that for solving the inconsistencies present in earlier theoretical studies, a state-specific solvation approach is needed: one should go beyond the standard linear-response scheme in polarisable dielectric models. Finally, using a validated model, we explore the impact of substitution by donor and acceptor groups.

5.
Phys Chem Chem Phys ; 20(30): 19958-19963, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022203

RESUMO

An original molecular fluorophore displaying single keto (K*) excited-state intramolecular proton transfer (ESIPT) emission is presented in this article. Substitution at the 3 and 5 positions of the phenol ring of a 2-(2'-hydroxyphenylbenzoxazole) (HBO) dye by triethylsilyl-ethynyl fragments leads to a drastic enhancement of fluorescence in the solution-state as compared to unsubstituted analogues. This intense fluorescence emission is also retained in a protic solvent like ethanol and in the solid-state as embedded in a potassium bromide pellet or as 1% doped in a poly(methyl methacrylate) (PMMA) film. The experimental optical properties were confirmed by ab initio calculations. Random lasing (RL) studies performed on this ESIPT emitter show the presence of stimulated emission occurring above the threshold level of pumping energy density (ρth ≈ 300 µJ cm-2) in the PMMA matrix. To the best of our knowledge, this study constitutes the first observation of RL based on ESIPT fluorescence.

6.
J Phys Chem B ; 126(10): 2108-2118, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35238563

RESUMO

This article describes the synthesis, spectroscopic studies, and theoretical calculations of nine original fluorophores based on the 2-(2'-hydroxyphenyl)benzazole (HBX) scaffold, functionalized at the 4-position of the phenol ring by ethynyl-extended aniline moieties. HBX dyes are well-known to display an excited-state intramolecular proton transfer (ESIPT) process, owing to a strong six-membered hydrogen bond in their structure that allows for an enol/keto tautomerism after photoexcitation. Appropriate electronic substitution can perturb the ESIPT process, leading to dual fluorescence, both excited tautomers emitting at specific wavelengths. In the examples described herein, it is demonstrated that the proton transfer can be finely frustrated by a modification of the constitutive heteroring, leading to a single emission band from the excited enol or keto tautomer or a dual emission with relative intensities highly dependent on the environment. Moreover, the nature of the functionalization of the N-alkylated aniline moiety also has a significant importance on the relative excited-state stabilities of the two tautomers in solution. To shed more light on these features, quantum chemical calculations by the density functional theory are used to determine the excited-state energies and rationalize the experimental spectroscopic data.


Assuntos
Corantes Fluorescentes , Prótons , Ligação de Hidrogênio , Modelos Moleculares , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA