Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Phys Chem Chem Phys ; 25(34): 22719-22733, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37606522

RESUMO

Advances in hyperpolarisation and indirect detection have enabled the development of xenon nuclear magnetic resonance (NMR) biosensors (XBSs) for molecule-selective sensing in down to picomolar concentration. Cryptophanes (Crs) are popular cages for hosting the Xe "spy". Understanding the microscopic host-guest chemistry has remained a challenge in the XBS field. While early NMR computations of XBSs did not consider the important effects of host dynamics and explicit solvent, here we model the motionally averaged, relativistic NMR chemical shift (CS) of free Xe, Xe in a prototypic CrA cage and Xe in a water-soluble CrA derivative, each in an explicit H2O solvent, over system configurations generated at three different levels of molecular dynamics (MD) simulations. We confirm the "contact-type" character of the Xe CS, arising from the increased availability of paramagnetic channels, magnetic couplings between occupied and virtual orbitals through the short-ranged orbital hyperfine operator, when neighbouring atoms are in contact with Xe. Remarkably, the Xe CS in the present, highly dynamic and conformationally flexible situations is found to depend linearly on the coordination number of the Xe atom. We interpret the high- and low-CS situations in terms of the magnetic absorption spectrum and choose our preference among the used MD methods based on comparison with the experimental CS. We check the role of spin-orbit coupling by comparing with fully relativistic CS calculations. The study outlines the computational workflow required to realistically model the CS of Xe confined in dynamic cavity structures under experimental conditions, and contributes to microscopic understanding of XBSs.

2.
Phys Chem Chem Phys ; 25(4): 3121-3135, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36621831

RESUMO

Transition metal complexes have important roles in many biological processes as well as applications in fields such as pharmacy, chemistry and materials science. Paramagnetic nuclear magnetic resonance (pNMR) is a valuable tool in understanding such molecules, and theoretical computations are often advantageous or even necessary in the assignment of experimental pNMR signals. We have employed density functional theory (DFT) and the domain-based local pair natural orbital coupled-cluster method with single and double excitations (DLPNO-CCSD), as well as a number of model improvements, to determine the critical hyperfine part of the chemical shifts of the iron pyrazolylborate complexes [Tp2Fe]+ and Tp2Fe using a modern version of the Kurland-McGarvey theory, which is based on parameterising the hyperfine, electronic Zeeman and zero-field splitting interactions via the parameters of the electron paramagnetic resonance Hamiltonian. In the doublet [Tp2Fe]+ system, the calculations suggest a re-assignment of the 13C signal shifts. Consideration of solvent via the conductor-like polarisable continuum model (C-PCM) versus explicit solvent molecules reveals C-PCM alone to be insufficient in capturing the most important solvation effects. Tp2Fe exhibits a spin-crossover effect between a high-spin quintet (S = 2) and a low-spin singlet (S = 0) state, and its recorded temperature dependence can only be reproduced theoretically by accounting for the thermal Boltzmann distribution of the open-shell excited state and the closed-shell ground-state occupations. In these two cases, DLPNO-CCSD is found, in calculating the hyperfine couplings, to be a viable alternative to DFT, the demonstrated shortcomings of which have been a significant issue in the development of computational pNMR.

3.
Phys Chem Chem Phys ; 25(40): 27731-27743, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814529

RESUMO

Nuclear spin-induced optical rotation (NSOR) is a nuclear magneto-optic effect that manifests itself as a rotation of the plane of polarization of linearly polarized light. The effect is induced by ordered nuclear magnetic moments within a molecule. NSOR is sensitive to specific, localized interactions. Hence, the connection between the local chemical environment and the corresponding NSOR signal is crucial to understand. Despite the fact that contributions to better understand the connection have been made, the general systematics still remain unknown. In this paper, NSOR in oxygen compounds is investigated systematically to better understand the impact of oxygen atoms on the NSOR signal. NSOR signals are computed using density-functional theory methods for five different classes of oxygen compounds. The ability of NSOR to distinguish different molecules and individual nuclei in the molecules is studied and the information provided by NSOR is compared to conventional NMR spectroscopy. The results reveal that NSOR is capable of chemical distinction between nuclei and molecules, and by using NMR and NSOR together it is possible to distinguish nuclei near the oxygen atom.

4.
Phys Chem Chem Phys ; 25(15): 10620-10627, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37000500

RESUMO

The 3He atom is an excellent NMR probe, particularly when enclosed in endohedral helium fullerenes. The 3He chemical shift, δ(3He), in fullerenes spans a range from ca. -50 to +10 ppm, and changes sensitively between different cages, isomers, and external substituents. Reduction of the fullerenes to anions changes the δ(3He) dramatically and unexpectedly, particularly for the most symmetric and also the most abundant C60 and C70 cages. While the 3He atom is shielded by ∼43 ppm upon charging the He@C60 to He@C606-, it is correspondingly deshielded by ∼37 ppm in the He@C70/He@C706- pair. Here, we show that such puzzling differences in δ(3He) relate to the high symmetry of the host fullerene cages. While similar shielding is induced at the 3He atom by the core orbitals of different cages, the symmetry of the cage allows or quenches large paramagnetic, i.e., deshielding orbital interactions of frontier orbitals upon charging of the cage, which is directly responsible for the large observed chemical shift range of endohedral 3He.

5.
Phys Chem Chem Phys ; 25(35): 24081-24096, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37655469

RESUMO

Structural disorder and low crystallinity render it challenging to characterise the atomic-level structure of layered double hydroxides (LDH). We report a novel multi-step, first-principles computational workflow for the analysis of paramagnetic solid-state NMR of complex inorganic systems such as LDH, which are commonly used as catalysts and energy storage materials. A series of 13CO32--labelled Mg2-xNixAl-LDH, x ranging from 0 (Mg2Al-LDH) to 2 (Ni2Al-LDH), features three distinct eigenvalues δ11, δ22 and δ33 of the experimental 13C chemical shift tensor. The δii correlate directly with the concentration of the paramagnetic Ni2+ and span a range of |δ11 - δ33| ≈ 90 ppm at x = 0, increasing to 950 ppm at x = 2. In contrast, the isotropic shift, δiso(13C), only varies by -14 ppm in the series. Detailed insight is obtained by computing (1) the orbital shielding by periodic density-functional theory involving interlayer water, (2) the long-range pseudocontact contribution of the randomly distributed Ni2+ ions in the cation layers (characterised by an ab initio susceptibility tensor) by a lattice sum, and (3) the close-range hyperfine terms using a full first-principles shielding machinery. A pseudohydrogen-terminated two-layer cluster model is used to compute (3), particularly the contact terms. Due to negative spin density contribution at the 13C site arising from the close-by Ni2+ sites, this step is necessary to reach a semiquantitative agreement with experiment. These findings influence future NMR investigations of the formally closed-shell interlayer species within LDH, such as the anions or water. Furthermore, the workflow is applicable to a variety of complex materials.

6.
Phys Chem Chem Phys ; 25(4): 3309-3322, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36630169

RESUMO

The magnetic properties of the nickelalumite-type layered double hydroxides (LDH), MAl4(OH)12(SO4)·3H2O (MAl4-LDH) with M = Co2+ (S = 3/2), Ni2+ (S = 1), or Cu2+ (S = 1/2) were determined by a combined experimental and computational approach. They represent three new inorganic, low-dimensional magnetic systems with a defect-free, structurally ordered magnetic lattice. They exhibit no sign of magnetic ordering down to 2 K in contrast to conventional hydrotalcite LDH. Detailed insight into the complex interplay between the choice of magnetic ion (M2+) and magnetic properties was obtained by a combination of magnetic susceptibility, heat capacity, neutron scattering, solid-state NMR spectroscopy, and first-principles calculations. The NiAl4- and especially CoAl4-LDH have pronounced zero-field splitting (ZFS, easy-axis and easy-plane, respectively) and weak ferromagnetic nearest-neighbour interactions. Thus, they are rare examples of predominantly zero-dimensional spin systems in dense, inorganic matrices. In contrast, CuAl4-LDH (S = 1/2) consists of weakly ferromagnetic S = 1/2 spin chains. For all three MAl4-LDH, good agreement is found between the experimental magnetic parameters (J, D, g) and first-principles quantum chemical calculations, which also predict that the interchain couplings are extremely weak (< 0.1 cm-1). Thus, our approach will be valuable for evaluation and prediction of magnetic properties in other inorganic materials.

7.
Phys Chem Chem Phys ; 24(30): 17946-17950, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35748333

RESUMO

A microscopic description of the energetics and dynamics of xenon NMR biosensors can be experimentally difficult to achieve. We conduct molecular dynamics and metadynamics simulations of a prototypical Xe@cryptophane-A biosensor in an explicit water solvent. We compute the non-covalent Xe binding energy, identify the complexation mechanism of Xe, and calculate the exchange dynamics of water molecules between the solution and the host. Three distinct, hitherto unreported Xe exchange processes are identified, and water molecules initialize each one. The obtained binding energies support the existing literature. The residence times and energetics of water guests are reported. An empty host does not remain empty, but is occupied by water. The results contribute to the understanding and development of Xe biosensors based on cryptophane derivatives and alternative host structures.


Assuntos
Técnicas Biossensoriais , Xenônio , Compostos Policíclicos , Água/química , Xenônio/química , Isótopos de Xenônio
8.
Inorg Chem ; 59(13): 9294-9307, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32558559

RESUMO

The paramagnetic pyrazolylborates Tp2M and Tp*2M (M = Cu, Ni, Co, Fe, Mn, Cr, V) as well as [Tp2M]+ and [Tp*2M]+ (M = Fe, Cr, V) have been synthesized and their NMR spectra recorded. The 1H signal shift ranges vary from ∼30 ppm (Cu(II) and V(III)) to ∼220 ppm (Co(II)), and the 13C signal shift ranges from ∼180 ppm (Fe(III)) to ∼1150 ppm (Cr(II)). The 11B and 14N shifts are ∼360 and ∼730 ppm, respectively. Both negative and positive shifts have been observed for all nuclei. The narrow NMR signals of the Co(II), Fe(II), Fe(III), and V(III) derivatives provide resolved 13C,1H couplings. All chemical shifts have been calculated from first-principles on a modern version of Kurland-McGarvey theory which includes optimized structures, zero-field splitting, and g tensors, as well as signal shift contributions. Temperature dependence in the Fe(II) spin-crossover complex results from the equilibrium of the ground singlet and the excited quintet. We illustrate both the assignment and analysis capabilities, as well as the shortcomings of the current computational methodology.

9.
Phys Chem Chem Phys ; 22(16): 8485-8490, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32285887

RESUMO

Nuclear shielding and chemical shift are considered independent of the magnetic-field strength. Ramsey proposed on theoretical grounds in 1970 that this may not be valid for heavy nuclei. Here we present experimental evidence for the direct field dependence of shielding, using 59Co shielding in Co(acac)3 [tris(acetylacetonate)cobalt(iii)] as an example. We carry out NMR experiments in four field strengths for this low-spin diamagnetic Co(iii) complex, which features a very large and negative nuclear shielding constant of the central Co nucleus. This is due to a magnetically accessible, low-energy eg ← t2g orbital excitation of the d6 system. The experiments result in temperature-dependent magnetic-field dependence of -5.7 to -5.2 ppb T-2 of the 59Co shielding constant, arising from the direct modification of the electron cloud of the complex by the field. First-principles multiconfigurational non-linear response theory calculations verify the sign and order of magnitude of the experimental results.

10.
Phys Chem Chem Phys ; 22(15): 8048-8059, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32239061

RESUMO

13C solid-state MAS NMR spectra of a series of paramagnetic metal acetylacetonate complexes; [VO(acac)2] (d1, S = ½), [V(acac)3] (d2, S = 1), [Ni(acac)2(H2O)2] (d8, S = 1), and [Cu(acac)2] (d9, S = ½), were assigned using modern NMR shielding calculations. This provided a reliable assignment of the chemical shifts and a qualitative insight into the hyperfine couplings. Our results show a reversal of the isotropic 13C shifts, δiso(13C), for CH3 and CO between the d1 and d2versus the d8 and d9 acetylacetonate complexes. The CH3 shifts change from about -150 ppm (d1,2) to roughly 1000 ppm (d8,9), whereas the CO shifts decrease from 800 ppm to about 150 ppm for d1,2 and d8,9, respectively. This was rationalized by comparison of total spin-density plots and computed contact couplings to those corresponding to singly occupied molecular orbitals (SOMOs). This revealed the interplay between spin delocalization of the SOMOs and spin polarization of the lower-energy MOs, influenced by both the molecular symmetry and the d-electron configuration. A large positive chemical shift results from spin delocalization and spin polarization acting in the same direction, whereas their cancellation corresponds to a small shift. The SOMO(s) for the d8 and d9 complexes are σ-like, implying spin-delocalization on the CH3 and CO groups of the acac ligand, cancelled only for CO by spin polarization. In contrast, the SOMOs of the d1 and d2 systems are π-like and a large CO-shift results from spin polarization, which accounts for the reversed assignment of δiso(13C) for CH3 and CO.

11.
Langmuir ; 34(12): 3755-3766, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29478324

RESUMO

A general model for nuclear magnetic resonance (NMR) relaxation studies of fluid bilayer systems is introduced, combining a mesoscopic Brownian dynamics description of the bilayer with atomistic molecular dynamics (MD) simulations. An example is given for dipalmitoylphosphatidylcholine in 2H2O solvent and compared with the experiment. Experimental agreement is within a factor of 2 in the water relaxation rates, based on a postulated model with fixed parameters, which are largely available from the MD simulation. Relaxation rates are particularly sensitive to the translational diffusion of water perturbed by the interface dynamics and structure. Simulation results suggest that a notable deviation in the relaxation rates may follow from the commonly used small-angle approximation of bilayer undulation. The method has the potential to overcome the temporal and spatial limitations in computing NMR relaxation with atomistic MD, as well as the shortcomings of continuum models enabling a consistent description of experiments performed on a solvent lipid and added spin probes. This work opens for possibilities to understand relaxation processes involving systems such as micelles, multilamellar vesicles, red blood cells, and so forth at biologically relevant timescales in great detail.


Assuntos
Óxido de Deutério/química , Bicamadas Lipídicas/química , 1,2-Dipalmitoilfosfatidilcolina/química , Difusão , Espectroscopia de Ressonância Magnética , Modelos Químicos , Simulação de Dinâmica Molecular , Solventes/química
12.
Phys Chem Chem Phys ; 20(35): 22547-22555, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141806

RESUMO

Transition metal complexes can possess a large magnetic susceptibility anisotropy, facilitating applications such as paramagnetic tags or shift agents in nuclear magnetic resonance (NMR) spectroscopy. Due to its g-shift and zero-field splitting (ZFS) we demonstrate on a Co(ii) clathrochelate with an aliphatic 16-carbon chain, a modern approach for ab initio calculation of paramagnetic susceptibility. Due to its large anisotropy, large linear dimension but relatively low number of atoms, the chosen complex is especially well-suited for testing the long-range point-dipole approximation (PDA) for the pseudocontact shifts (PCSs) of paramagnetic NMR. A static structure of the complex is used to compare the limiting long-distance PDA with full first-principles quantum-mechanical calculation. A non-symmetric formula for the magnetic susceptibility tensor is necessary to be consistent with the latter. Comparison with experimental shifts is performed by conformational averaging over the chain dynamics using Monte Carlo simulation. We observe satisfactory accuracy from the rudimentary simulation and, more importantly, demonstrate the fast applicability of the ab initio PDA.

13.
Solid State Nucl Magn Reson ; 87: 29-37, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28759801

RESUMO

Recent advances in computational methodology allowed for first-principles calculations of the nuclear shielding tensor for a series of paramagnetic nickel(II) acetylacetonate complexes, [Ni(acac)2L2] with L = H2O, D2O, NH3, ND3, and PMe2Ph have provided detailed insight into the origin of the paramagnetic contributions to the total shift tensor. This was employed for the assignment of the solid-state 1,2H and 13C MAS NMR spectra of these compounds. The two major contributions to the isotropic shifts are by orbital (diamagnetic-like) and contact mechanism. The orbital shielding, contact, as well as dipolar terms all contribute to the anisotropic component. The calculations suggest reassignment of the 13C methyl and carbonyl resonances in the acac ligand [Inorg. Chem.53, 2014, 399] leading to isotropic paramagnetic shifts of δ(13C) ≈ 800-1100 ppm and ≈180-300 ppm for 13C for the methyl and carbonyl carbons located three and two bonds away from the paramagnetic Ni(II) ion, respectively. Assignment using three different empirical correlations, i.e., paramagnetic shifts, shift anisotropy, and relaxation (T1) were ambiguous, however the latter two support the computational results. Thus, solid-state NMR spectroscopy in combination with modern quantum-chemical calculations of paramagnetic shifts constitutes a promising tool for structural investigations of metal complexes and materials.

14.
J Phys Chem A ; 120(42): 8326-8338, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27687143

RESUMO

Polycrystalline bis(dialkyldithiophosphato)Pt(II) complexes of the form [Pt{S2P(OR)2}2] (R = ethyl, iso-propyl, iso-butyl, sec-butyl or cyclo-hexyl group) were studied using solid-state 31P and 195Pt NMR spectroscopy, to determine the influence of R to the structure of the central chromophore. The measured anisotropic chemical shift (CS) parameters for 31P and 195Pt afford more detailed chemical and structural information, as compared to isotropic CS and J couplings alone. Advanced theoretical modeling at the hybrid DFT level, including both crystal lattice and the important relativistic spin-orbit effects qualitatively reproduced the measured CS tensors, supported the experimental analysis, and provided extensive orientational information. A particular correction model for the non-negligible lattice effects was adopted, allowing one to avoid a severe deterioration of the 195Pt anisotropic parameters due to the high requirements posed on the pseudopotential quality in such calculations. Though negligible differences were found between the 195Pt CS tensors with different substituents R, the 31P CS parameters differed significantly between the complexes, implying the potential to distinguish between them. The presented approach enables good resolution and a detailed analysis of heavy-element compounds by solid-state NMR, thus widening the understanding of such systems.

15.
Angew Chem Int Ed Engl ; 55(47): 14713-14717, 2016 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-27781358

RESUMO

Long-range pseudo-contact NMR shifts (PCSs) provide important restraints for the structure refinement of proteins when a paramagnetic metal center is present, either naturally or introduced artificially. Here we show that ab initio quantum-chemical methods and a modern version of the Kurland-McGarvey approach for paramagnetic NMR (pNMR) shifts in the presence of zero-field splitting (ZFS) together provide accurate predictions of all PCSs in a metalloprotein (high-spin cobalt-substituted MMP-12 as a test case). Computations of 314 13 C PCSs using g- and ZFS tensors based on multi-reference methods provide a reliable bridge between EPR-parameter- and susceptibility-based pNMR formalisms. Due to the high sensitivity of PCSs to even small structural differences, local structures based either on X-ray diffraction or on various DFT optimizations could be evaluated critically by comparing computed and experimental PCSs. Many DFT functionals provide insufficiently accurate structures. We also found the available 1RMZ PDB X-ray structure to exhibit deficiencies related to binding of a hydroxamate inhibitor. This has led to a newly refined PDB structure for MMP-12 (5LAB) that provides a more accurate coordination arrangement and PCSs.

16.
Phys Chem Chem Phys ; 17(11): 7158-71, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25690809

RESUMO

Applications of liquid crystals (LCs), such as smart windows and the ubiquitous display devices, are based on controlling the orientational and translational order in a small volume of LC medium. Hence, understanding the effects of confinement to the liquid crystal phase behaviour is essential. The NMR shielding of (129)Xe atoms dissolved in LCs constitutes a very sensitive probe to the details of LC environment. Linking the experimental results to microscopic phenomena calls for molecular simulations. In this work, the NMR shielding of atomic (129)Xe dissolved in a uniaxial thermotropic LC confined to nanosized cylindrical cavities is computed from coarse-grained (CG) isobaric Monte Carlo (MC) simulations with a quantum-chemically (QC) pre-parameterised pairwise-additive model for the Xe nuclear shielding tensor. We report the results for the (129)Xe nuclear shielding and its connection to the structure and order of the LC appropriate to two different cavity sizes, as well as a comparison to the results of bulk (non-confined) simulations. We find that the confinement changes the LC phase structure dramatically and gives rise to the coexistence of varying degrees of LC order, which is reflected in the Xe shielding. Furthermore, we qualitatively reproduce the behaviour of the mean (129)Xe chemical shift with respect to temperature for atomic Xe dissolved in LC confined to controlled-pore glass materials. In the small-radius cavity the nematic - paranematic phase transition is revealed only by the anisotropic component of the (129)Xe nuclear shielding. In the larger cavity, the nematic - paranematic - isotropic transition is clearly seen in the Xe shielding. The simulated (129)Xe NMR shielding is insensitive to the smectic-A - nematic transition, since in the smectic-A phase, the Xe atoms largely occupy the imperfect layer structure near the cavity walls. The direct contribution of the cavity wall to (129)Xe nuclear shielding is dependent on the cavity size but independent of temperature. Our results show that the combination of CG simulations and a QC pre-parameterised (129)Xe NMR shielding allows efficient studies of the phase behaviour and structure of complex systems containing thousands of molecules, and brings us closer to the simulation of NMR experiments.

17.
Chemphyschem ; 15(11): 2337-50, 2014 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-24862946

RESUMO

Novel, high-sensitivity and high-resolution spectroscopic methods can provide site-specific nuclear information by exploiting nuclear magneto-optic properties. We present a first-principles electronic structure formulation of the recently proposed nuclear-spin-induced Cotton-Mouton effect in a strong external magnetic field (NSCM-B). In NSCM-B, ellipticity is induced in a linearly polarized light beam, which can be attributed to both the dependence of the symmetric dynamic polarizability on the external magnetic field and the nuclear magnetic moment, as well as the temperature-dependent partial alignment of the molecules due to the magnetic fields. Quantum-chemical calculations of NSCM-B were conducted for a series of molecular liquids. The overall order of magnitude of the induced ellipticities is predicted to be 10(-11) -10(-6) rad T(-1) M(-1) cm(-1) for fully spin-polarized nuclei. In particular, liquid-state heavy-atom systems should be promising for experiments in the Voigt setup.

18.
Chemphyschem ; 15(9): 1799-808, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24807480

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is an important molecular characterisation method that may aid the synthesis and production of graphenes, especially the molecular-scale graphene nanoislands that have gathered significant attention due to their potential electronic and optical applications. Herein, carbon-13 NMR chemical shifts were calculated using density functional theory methods for finite, increasing-size fragments of graphene, hydrogenated graphene (graphane) and fluorinated graphene (fluorographene). Both concentric hexagon-shaped (zigzag boundary) and crenellated (armchair) fragments were investigated to gain information on the effect of different types of flake boundaries. Convergence trends of the (13)C chemical shift with respect to increasing fragment size and the boundary effects were found and rationalised in terms of low-lying electronically excited states. The results predict characteristic behaviour in the (13)C NMR spectra. Particular attention was paid to the features of the signals arising from the central carbon atoms of the fragments, for graphene and crenellated graphene on the one hand and graphane and fluorographene on the other hand, to aid the interpretation of the overall spectral characteristics. In graphene, the central nuclei become more shielded as the system size increases whereas the opposite behaviour is observed for graphane and fluorographene. The (13)C signals from some of the perimeter nuclei of the crenellated fragments obtain smaller and larger chemical shift values than central nuclei for graphene and graphane/fluorographene, respectively. The diameter of the graphenic quantum dots with zigzag boundary correlates well with the predicted carbon-13 chemical shift range, thus enabling estimation of the size of the system by NMR spectroscopy. The results provide data of predictive quality for future NMR analysis of the graphene nanoflake materials.

19.
Phys Chem Chem Phys ; 16(40): 22309-20, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25222796

RESUMO

Solvation-induced shifts in molecular properties can be realistically simulated by employing a dynamic model with explicit solvent molecules. In this work, (13)C NMR chemical shifts of various candidate antenna molecules for dye-sensitised solar cells have been studied by using density-functional theory calculations both in vacuo and by employing a dynamic solvation model. The solvent effects were investigated using instantaneous molecular dynamics snapshots containing the antenna molecule and surrounding acetonitrile solvent molecules. Such calculations take into account the main mechanisms of solvation-induced chemical shifts. We have analysed the contributions to the solvent shift due to the solvent susceptibility anisotropy, changes in the density of the virtual orbital space and the accessibility of the excited states to the pronouncedly local magnetic hyperfine operator. We present Lorentzian-broadened chemical shift stick spectra in which a comparison of the in vacuo and dynamic-solvation model results is graphically illustrated. The results show that the solvent-accessible atoms at the perimeter of the solute are influenced by the virtual states of the solvent molecules, which are visible to the hyperfine operators of the perimeter nuclei. This enables efficient coupling of the ground state of the solute to the magnetically allowed excited states, resulting in a positive chemical shift contribution of the perimeter nuclei. As a result of solvation, the chemical shift signals of perimeter nuclei are found to be displaced towards larger chemical shift values, whereas the nuclei of the inner region of the solute molecules show the opposite trend. The solvent susceptibility anisotropy is found to cause a small and practically constant contribution.

20.
Phys Chem Chem Phys ; 16(15): 6916-24, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24595457

RESUMO

Ni(2+)(aq) has been used for many decades as a model system for paramagnetic nuclear magnetic resonance (pNMR) relaxation studies. More recently, its magnetic properties and also nuclear magnetic relaxation rates have been studied computationally. We have calculated electron paramagnetic resonance and NMR parameters using quantum-mechanical (QM) computation of molecular dynamics snapshots, obtained using a polarizable empirical force field. Statistical averages of hyperfine coupling, g- and zero-field splitting tensors, as well as the pNMR shielding terms, are compared to the available experimental and computational data. In accordance with our previous work, the isotropic hyperfine coupling as well as nuclear shielding values agree well with experimental measurements for the (17)O nuclei of water molecules in the first solvation shell of the nickel ion, whereas larger deviations are found for (1)H centers. We report, for the first time, the Curie-type contribution to the pNMR relaxation rate using QM calculations together with Redfield relaxation theory. The Curie relaxation mechanism is analogous to chemical shift anisotropy relaxation, well-known in diamagnetic NMR. Due to the predominance of other types of paramagnetic relaxation mechanisms for this system, it is possible to extract the Curie term only computationally. The Curie mechanism alone would result in around 16 and 20 s(-1) of relaxation rates (R1 and R2 respectively) for the (1)H nuclei of water molecules bonded to the Ni(2+) center, in a magnetic field of 11.7 T. The corresponding (17)O relaxation rates are around 33 and 38 s(-1). We also report the Curie contribution to the relaxation rate for molecules beyond the first solvation shell in a 1 M solution of Ni(2+) in water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA