Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Glia ; 69(5): 1241-1250, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33400321

RESUMO

Astrocytes are in control of metabolic homeostasis in the brain and support and modulate neuronal function in various ways. Astrocyte-derived l-lactate (lactate) is thought to play a dual role as a metabolic and a signaling molecule in inter-cellular communication. The biological significance of lactate release from astrocytes is poorly understood, largely because the tools to manipulate lactate levels in vivo are limited. We therefore developed new viral vectors for astrocyte-specific expression of a mammalianized version of lactate oxidase (LOx) from Aerococcus viridans. LOx expression in astrocytes in vitro reduced their intracellular lactate levels as well as the release of lactate to the extracellular space. Selective expression of LOx in astrocytes of the dorsal hippocampus in mice resulted in increased locomotor activity in response to novel stimuli. Our findings suggest that a localized decreased intracellular lactate pool in hippocampal astrocytes could contribute to greater responsiveness to environmental novelty. We expect that use of this molecular tool to chronically limit astrocytic lactate release will significantly facilitate future studies into the roles and mechanisms of intercellular lactate communication in the brain.


Assuntos
Astrócitos , Hipocampo , Ácido Láctico , Animais , Camundongos , Neurônios , Oxirredução
2.
Glia ; 66(11): 2414-2426, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30260505

RESUMO

Discovery of neuroprotective pathways is one of the major priorities for neuroscience. Astrocytes are natural neuroprotectors and it is likely that brain resilience can be enhanced by mobilizing their protective potential. Among G-protein coupled receptors expressed by astrocytes, two highly related receptors, GPR37L1 and GPR37, are of particular interest. Previous studies suggested that these receptors are activated by a peptide Saposin C and its neuroactive fragments (prosaptide TX14(A)), which were demonstrated to be neuroprotective in various animal models by several groups. However, pairing of Saposin C or prosaptides with GPR37L1/GPR37 has been challenged and presently GPR37L1/GPR37 have regained their orphan status. Here, we demonstrate that in their natural habitat, astrocytes, these receptors mediate a range of effects of TX14(A), including protection from oxidative stress. The Saposin C/GPR37L1/GPR37 pathway is also involved in the neuroprotective effect of astrocytes on neurons subjected to oxidative stress. The action of TX14(A) is at least partially mediated by Gi-proteins and the cAMP-PKA axis. On the other hand, when recombinant GPR37L1 or GPR37 are expressed in HEK293 cells, they are not functional and do not respond to TX14(A), which explains unsuccessful attempts to confirm the ligand-receptor pairing. Therefore, this study identifies GPR37L1/GPR37 as the receptors for TX14(A), and, by extension of Saposin C, and paves the way for the development of neuroprotective therapeutics acting via these receptors.


Assuntos
Astrócitos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Saposinas/metabolismo , Adjuvantes Imunológicos/farmacologia , Animais , Animais Recém-Nascidos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/metabolismo , AMP Cíclico/farmacologia , Embrião de Mamíferos , Células HEK293 , Humanos , L-Lactato Desidrogenase/metabolismo , Fatores de Crescimento Neural/farmacologia , Fármacos Neuroprotetores/química , Interferência de RNA/fisiologia , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/genética , Saposinas/química , Água/farmacologia , Ferimentos e Lesões/tratamento farmacológico
3.
Brain Sci ; 13(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36672031

RESUMO

Lactate is a universal metabolite produced and released by all cells in the body. Traditionally it was viewed as energy currency that is generated from pyruvate at the end of the glycolytic pathway and sent into the extracellular space for other cells to take up and consume. In the brain, such a mechanism was postulated to operate between astrocytes and neurons many years ago. Later, the discovery of lactate receptors opened yet another chapter in the quest to understand lactate actions. Other ideas, such as modulation of NMDA receptors were also proposed. Up to this day, we still do not have a consensus view on the relevance of any of these mechanisms to brain functions or their contribution to human or animal physiology. While the field develops new ideas, in this brief review we analyze some recently published studies in order to focus on some unresolved controversies and highlight the limitations that need to be addressed in future work. Clearly, only by using similar and overlapping methods, cross-referencing experiments, and perhaps collaborative efforts, we can finally understand what the role of lactate in the brain is and why this ubiquitous molecule is so important.

4.
Brain Sci ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34439675

RESUMO

Astrocytes support and modulate neuronal activity through the release of L-lactate. The suggested roles of astrocytic lactate in the brain encompass an expanding range of vital functions, including central control of respiration and cardiovascular performance, learning, memory, executive behaviour and regulation of mood. Studying the effects of astrocytic lactate requires tools that limit the release of lactate selectively from astrocytes. Here, we report the validation in vitro of novel molecular constructs derived from enzymes originally found in bacteria, that when expressed in astrocytes, interfere with lactate handling. When lactate 2-monooxygenase derived from M. smegmatis was specifically expressed in astrocytes, it reduced intracellular lactate pools as well as lactate release upon stimulation. D-lactate dehydrogenase derived from L. bulgaricus diverts pyruvate towards D-lactate production and release by astrocytes, which may affect signalling properties of lactate in the brain. Together with lactate oxidase, which we have previously described, this set of transgenic tools can be employed to better understand astrocytic lactate release and its role in the regulation of neuronal activity in different behavioural contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA