Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Biol ; 21(9): e3002150, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37747897

RESUMO

The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA-binding protein (RBP), ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RBP, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia, phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important posttranscriptional gene regulatory mechanism in Caenorhabditis elegans that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Neurônios/metabolismo , Expressão Gênica , Longevidade/genética , Regulação da Expressão Gênica , Transativadores/metabolismo
2.
J Cell Sci ; 136(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129573

RESUMO

Restricting the localization of the evolutionarily conserved centromeric histone H3 variant CENP-A to centromeres prevents chromosomal instability (CIN). The mislocalization of CENP-A to non-centromeric regions contributes to CIN in yeasts, flies and human cells. Even though overexpression and mislocalization of CENP-A have been reported in cancers, the mechanisms responsible for its mislocalization remain poorly understood. Here, we used an imaging-based high-throughput RNAi screen to identify factors that prevent mislocalization of overexpressed YFP-tagged CENP-A (YFP-CENP-A) in HeLa cells. Among the top five candidates in the screen - the depletion of which showed increased nuclear YFP-CENP-A fluorescence - were the histone chaperones CHAF1B (or p60) and CHAF1A (or p150). Follow-up validation and characterization experiments showed that CHAF1B-depleted cells exhibited CENP-A mislocalization, CIN phenotypes and increased enrichment of CENP-A in chromatin fractions. The depletion of DAXX, a histone H3.3 chaperone, suppressed CENP-A mislocalization and CIN in CHAF1B-depleted cells. We propose that in CHAF1B-depleted cells, DAXX promotes mislocalization of the overexpressed CENP-A to non-centromeric regions, resulting in CIN. In summary, we identified regulators of CENP-A localization and defined a role for CHAF1B in preventing DAXX-dependent CENP-A mislocalization and CIN.


Assuntos
Proteínas Cromossômicas não Histona , Histonas , Humanos , Histonas/genética , Proteína Centromérica A/genética , Células HeLa , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromatina , Centrômero/metabolismo , Chaperonas Moleculares/metabolismo , Instabilidade Cromossômica , Autoantígenos/genética , Fator 1 de Modelagem da Cromatina/genética
3.
Genome Res ; 31(1): 27-39, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355311

RESUMO

Adenosine (A) to inosine (I) RNA editing contributes to transcript diversity and modulates gene expression in a dynamic, cell type-specific manner. During mammalian brain development, editing of specific adenosines increases, whereas the expression of A-to-I editing enzymes remains unchanged, suggesting molecular mechanisms that mediate spatiotemporal regulation of RNA editing exist. Herein, by using a combination of biochemical and genomic approaches, we uncover a molecular mechanism that regulates RNA editing in a neural- and development-specific manner. Comparing editomes during development led to the identification of neural transcripts that were edited only in one life stage. The stage-specific editing is largely regulated by differential gene expression during neural development. Proper expression of nearly one-third of the neurodevelopmentally regulated genes is dependent on adr-2, the sole A-to-I editing enzyme in C. elegans However, we also identified a subset of neural transcripts that are edited and expressed throughout development. Despite a neural-specific down-regulation of adr-2 during development, the majority of these sites show increased editing in adult neural cells. Biochemical data suggest that ADR-1, a deaminase-deficient member of the adenosine deaminase acting on RNA (ADAR) family, is competing with ADR-2 for binding to specific transcripts early in development. Our data suggest a model in which during neural development, ADR-2 levels overcome ADR-1 repression, resulting in increased ADR-2 binding and editing of specific transcripts. Together, our findings reveal tissue- and development-specific regulation of RNA editing and identify a molecular mechanism that regulates ADAR substrate recognition and editing efficiency.


Assuntos
Edição de RNA , Adenosina/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inosina/genética , Inosina/metabolismo
4.
J Biol Chem ; 298(9): 102267, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850307

RESUMO

Members of the ADAR family of double-stranded RNA-binding proteins regulate one of the most abundant RNA modifications in humans, the deamination of adenosine to inosine. Several transcriptome-wide studies have been carried out to identify RNA targets of the active deaminases ADAR1 and ADAR2. However, our understanding of ADAR3, the brain-specific deaminase-deficient ADAR family member, is limited to a few transcripts. In this study, we identified over 3300 transcripts bound by ADAR3 and observed that binding of ADAR3 correlated with reduced editing of over 400 sites in the glioblastoma transcriptome. We further investigated the impact of ADAR3 on gene regulation of the transcript that encodes MAVS, an essential protein in the innate immune response pathway. We observed reduced editing in the MAVS 3' UTR in cells expressing increased ADAR3 or reduced ADAR1 suggesting ADAR3 acts as a negative regulator of ADAR1-mediated editing. While neither ADAR1 knockdown or ADAR3 overexpression affected MAVS mRNA expression, we demonstrate increased ADAR3 expression resulted in upregulation of MAVS protein expression. In addition, we created a novel genetic mutant of ADAR3 that exhibited enhanced RNA binding and MAVS upregulation compared with wildtype ADAR3. Interestingly, this ADAR3 mutant no longer repressed RNA editing, suggesting ADAR3 has a unique regulatory role beyond altering editing levels. Altogether, this study provides the first global view of ADAR3-bound RNAs in glioblastoma cells and identifies both a role for ADAR3 in repressing ADAR1-mediated editing and an RNA-binding dependent function of ADAR3 in regulating MAVS expression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Adenosina Desaminase , RNA de Cadeia Dupla , Proteínas de Ligação a RNA , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Glioblastoma/genética , Humanos , Imunidade Inata , Inosina/genética , Ligação Proteica , RNA de Cadeia Dupla/genética , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Commun Med (Lond) ; 4(1): 22, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378783

RESUMO

BACKGROUND: Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. METHODS: We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. RESULTS: Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. CONCLUSIONS: Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance.


Breast cancer is a complex disease, and not all patients respond well to existing treatments. In this study, we sought to understand why some patients with a specific type of breast cancer called triple-negative breast cancer respond poorly to current therapies. We also aimed to identify new treatments for these patients. We analyzed genetic data from breast cancer patients and identified a factor called S100A8/A9, which is linked to poor outcomes in early-stage cancer. We tested drugs that can reduce the levels of this factor in tumors and found promising results, especially when combined with another treatment called immunotherapy. Our findings suggest that S100A8/A9 could help predict how patients will respond to treatments, potentially leading to better therapies in the future.

6.
bioRxiv ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37205482

RESUMO

The ability to alter gene expression programs in response to changes in environmental conditions is central to the ability of an organism to thrive. For most organisms, the nervous system serves as the master regulator in communicating information about the animal's surroundings to other tissues. The information relay centers on signaling pathways that cue transcription factors in a given cell type to execute a specific gene expression program, but also provide a means to signal between tissues. The transcription factor PQM-1 is an important mediator of the insulin signaling pathway contributing to longevity and the stress response as well as impacting survival from hypoxia. Herein, we reveal a novel mechanism for regulating PQM-1 expression specifically in neural cells of larval animals. Our studies reveal that the RNA binding protein, ADR-1, binds to pqm-1 mRNA in neural cells. This binding is regulated by the presence of a second RNA binding protein, ADR-2, which when absent leads to reduced expression of both pqm-1 and downstream PQM-1 activated genes. Interestingly, we find that neural pqm-1 expression is sufficient to impact gene expression throughout the animal and affect survival from hypoxia; phenotypes that we also observe in adr mutant animals. Together, these studies reveal an important post-transcriptional gene regulatory mechanism that allows the nervous system to sense and respond to environmental conditions to promote organismal survival from hypoxia.

7.
bioRxiv ; 2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37790346

RESUMO

It remains elusive why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well. Our retrospective analysis of historical gene expression datasets reveals that increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors is robustly associated with subsequent disease progression in TNBC. Although it has recently gained recognition as a potential anticancer target, S100A8/A9 has not been integrated into clinical study designs evaluating molecularly targeted therapies. Our small molecule screen has identified PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Furthermore, combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Importantly, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Thus, our data suggest that S100A8/A9 could be a predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC and encourage the development of S100A8/A9-based liquid biopsy tests.

8.
Sci Rep ; 12(1): 13362, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922651

RESUMO

The RNA binding protein ADAR3 is expressed exclusively in the brain and reported to have elevated expression in tumors of patients suffering from glioblastoma compared to adjacent brain tissue. Yet, other studies have indicated that glioblastoma tumors exhibit hemizygous deletions of the genomic region encompassing ADAR3 (10p15.3). As the molecular and cellular consequences of altered ADAR3 expression are largely unknown, here we directly examined the impacts of elevated ADAR3 in a glioblastoma cell line model. Transcriptome-wide sequencing revealed 641 differentially expressed genes between control and ADAR3-expressing U87-MG glioblastoma cells. A vast majority of these genes belong to pathways involved in glioblastoma progression and are regulated by NF-κB signaling. Biochemical and molecular analysis indicated that ADAR3-expressing U87-MG cells exhibit increased NF-κB activation, and treatment with an NF-κB inhibitor abrogated the impacts of ADAR3 on gene expression. Similarly, we found that increased cell survival of ADAR3-expressing cells to temozolomide, the preferred chemotherapeutic for glioblastoma, was due to increased NF-κB activity. Aberrant constitutive NF-κB activation is a common event in glioblastoma and can impact both tumor progression and resistance to treatment. Our results suggest that elevated ADAR3 promotes NF-κB activation and a gene expression program that provides a growth advantage to glioblastoma cells.


Assuntos
Adenosina Desaminase/metabolismo , Neoplasias Encefálicas , Glioblastoma , Proteínas de Ligação a RNA/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , NF-kappa B/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
9.
Cell Chem Biol ; 29(3): 358-372.e5, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34525344

RESUMO

Triple-negative breast cancer (TNBC) is the breast cancer subtype with the poorest clinical outcome. The PIM family of kinases has emerged as a factor that is both overexpressed in TNBC and associated with poor outcomes. Preclinical data suggest that TNBC with an elevated MYC expression is sensitive to PIM inhibition. However, clinical observations indicate that the efficacy of PIM inhibitors as single agents may be limited, suggesting the need for combination therapies. Our screening effort identifies PIM and the 20S proteasome inhibition as the most synergistic combination. PIM inhibitors, when combined with proteasome inhibitors, induce significant antitumor effects, including abnormal accumulation of poly-ubiquitinated proteins, increased proteotoxic stress, and the inability of NRF1 to counter loss in proteasome activity. Thus, the identified combination could represent a rational combination therapy against MYC-overexpressing TNBC that is readily translatable to clinical investigations.


Assuntos
Neoplasias de Mama Triplo Negativas , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-pim-1 , Neoplasias de Mama Triplo Negativas/metabolismo
10.
Methods Mol Biol ; 1648: 103-127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28766293

RESUMO

Modification of RNA is essential for properly expressing the repertoire of RNA transcripts necessary for both cell type and developmental specific functions. RNA modifications serve to dynamically re-wire and fine-tune the genetic information carried by an invariable genome. One important type of RNA modification is RNA editing and the most common and well-studied type of RNA editing is the hydrolytic deamination of adenosine to inosine. Inosine is a biological mimic of guanosine; therefore, when RNA is reverse transcribed, inosine is recognized as guanosine by the reverse transcriptase and a cytidine is incorporated into the complementary DNA (cDNA) strand. During PCR amplification, guanosines pair with the newly incorporated cytidines. As a result, the adenosine-to-inosine (A-to-I) editing events are recognized as adenosine to guanosine changes when comparing the sequences of the genomic DNA to the cDNA. This chapter describes the methods for extracting endogenous RNA for subsequent analyses of A-to-I RNA editing using reverse transcriptase-based approaches. We discuss techniques for the detection of A-to-I RNA editing events in messenger RNA (mRNA), including analyzing editing levels at specific adenosines within the total pool of mRNA versus analyzing editing patterns that occur in individual transcripts and a method for detecting editing events across the entire transcriptome. The detection of RNA editing events and editing levels can be used to better understand normal biological processes and disease states.


Assuntos
Adenosina/genética , Inosina/genética , Edição de RNA , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Análise de Sequência de RNA/métodos , Adenosina/metabolismo , Animais , Humanos , Inosina/metabolismo , RNA Mensageiro/metabolismo
11.
Elife ; 62017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925356

RESUMO

ADAR proteins alter gene expression both by catalyzing adenosine (A) to inosine (I) RNA editing and binding to regulatory elements in target RNAs. Loss of ADARs affects neuronal function in all animals studied to date. Caenorhabditis elegans lacking ADARs exhibit reduced chemotaxis, but the targets responsible for this phenotype remain unknown. To identify critical neural ADAR targets in C. elegans, we performed an unbiased assessment of the effects of ADR-2, the only A-to-I editing enzyme in C. elegans, on the neural transcriptome. Development and implementation of publicly available software, SAILOR, identified 7361 A-to-I editing events across the neural transcriptome. Intersecting the neural editome with adr-2 associated gene expression changes, revealed an edited mRNA, clec-41, whose neural expression is dependent on deamination. Restoring clec-41 expression in adr-2 deficient neural cells rescued the chemotaxis defect, providing the first evidence that neuronal phenotypes of ADAR mutants can be caused by altered gene expression.


Assuntos
Adenosina Desaminase/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Quimiotaxia , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Adenosina/metabolismo , Animais , Perfilação da Expressão Gênica , Inosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA