Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695000

RESUMO

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células Progenitoras Linfoides/fisiologia , Células Progenitoras Mieloides/fisiologia , Receptores Notch/metabolismo , Linfócitos T/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Células Cultivadas , Feto , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
2.
Eur J Immunol ; 46(8): 1826-37, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27378598

RESUMO

Development of the primary T-cell repertoire takes place in the thymus. The linked processes of T-cell differentiation and T-cell repertoire selection each depend on interactions between thymocytes and thymic stromal cells; in particular, with the epithelial cells of the cortical and medullary thymic compartments (cortical and medullary thymic epithelial cells; cTECs and mTECs, respectively). The importance of the thymic epithelial cell lineage in these processes was revealed in part through analysis of nude (nu/nu) mice, which are congenitally hairless and athymic. The nude phenotype results from null mutation of the forkhead transcription factor FOXN1, which has emerged as a pivotal regulator both of thymus development and homeostasis. FOXN1 has been shown to play critical roles in thymus development, function, maintenance, and even regeneration, which positions it as a master regulator of thymic epithelial cell (TEC) differentiation. In this review, we discuss current understanding of the regulation and functions of FOXN1 throughout thymus ontogeny, from the earliest stages of organogenesis through homeostasis to age-related involution, contextualising its significance through reference to other members of the wider Forkhead family.


Assuntos
Diferenciação Celular , Células Epiteliais/citologia , Fatores de Transcrição Forkhead/fisiologia , Organogênese , Timo/embriologia , Animais , Humanos , Camundongos , Camundongos Nus , Timócitos/citologia
3.
Development ; 140(9): 2015-26, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23571219

RESUMO

The thymus is the central site of T-cell development and thus is of fundamental importance to the immune system, but little information exists regarding molecular regulation of thymus development in humans. Here we demonstrate, via spatial and temporal expression analyses, that the genetic mechanisms known to regulate mouse thymus organogenesis are conserved in humans. In addition, we provide molecular evidence that the human thymic epithelium derives solely from the third pharyngeal pouch, as in the mouse, in contrast to previous suggestions. Finally, we define the timing of onset of hematopoietic cell colonization and epithelial cell differentiation in the human thymic primordium, showing, unexpectedly, that the first colonizing hematopoietic cells are CD45(+)CD34(int/-). Collectively, our data provide essential information for translation of principles established in the mouse to the human, and are of particular relevance to development of improved strategies for enhancing immune reconstitution in patients.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organogênese , Timo/embriologia , Animais , Antígenos CD34/genética , Antígenos CD34/metabolismo , Artérias Carótidas/embriologia , Artérias Carótidas/metabolismo , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Endoderma/citologia , Endoderma/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Feminino , Feto/citologia , Feto/embriologia , Feto/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/metabolismo , Gravidez , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Timo/citologia , Timo/metabolismo , Fatores de Tempo
4.
PLoS Genet ; 7(11): e1002348, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072979

RESUMO

The forkhead transcription factor Foxn1 is indispensable for thymus development, but the mechanisms by which it mediates thymic epithelial cell (TEC) development are poorly understood. To examine the cellular and molecular basis of Foxn1 function, we generated a novel and revertible hypomorphic allele of Foxn1. By varying levels of its expression, we identified a number of features of the Foxn1 system. Here we show that Foxn1 is a powerful regulator of TEC differentiation that is required at multiple intermediate stages of TE lineage development in the fetal and adult thymus. We find no evidence for a role for Foxn1 in TEC fate-choice. Rather, we show it is required for stable entry into both the cortical and medullary TEC differentiation programmes and subsequently is needed at increasing dosage for progression through successive differentiation states in both cortical and medullary TEC. We further demonstrate regulation by Foxn1 of a suite of genes with diverse roles in thymus development and/or function, suggesting it acts as a master regulator of the core thymic epithelial programme rather than regulating a particular aspect of TEC biology. Overall, our data establish a genetics-based model of cellular hierarchies in the TE lineage and provide mechanistic insight relating titration of a single transcription factor to control of lineage progression. Our novel revertible hypomorph system may be similarly applied to analyzing other regulators of development.


Assuntos
Medula Suprarrenal/citologia , Diferenciação Celular/genética , Linhagem da Célula/genética , Desenvolvimento Embrionário/genética , Fatores de Transcrição Forkhead/metabolismo , Timo/crescimento & desenvolvimento , Medula Suprarrenal/metabolismo , Alelos , Animais , Células Epiteliais/metabolismo , Células Epiteliais/fisiologia , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Integrases/química , Integrases/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Tamoxifeno/química
5.
Cureus ; 16(6): e61631, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38966481

RESUMO

The contemporary literature provides conflicting evidence regarding the precedence of laparoscopic mesh rectopexy over laparoscopic suture rectopexy for full-thickness rectal prolapse. This study aimed to compare the clinical outcomes of mesh and suture rectopexy to improve the surgical management of complete rectal prolapse. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to extract studies based on mesh versus suture rectopexy and published from 2001 to 2023. The articles of interest were obtained from PubMed Central, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Journal Storage (JSTOR), Web of Science, Embase, Scopus, and the Cochrane Library. The primary outcomes included rectal prolapse recurrence, constipation improvement, and operative time. The secondary endpoints included the Cleveland Clinic Constipation Score, Cleveland Clinic Incontinence Score, intraoperative bleeding, hospital stay duration, mortality, overall postoperative complications, and surgical site infection. A statistically significant low recurrence of rectal prolapse (odds ratio: 0.41, 95% confidence interval (CI) 0.21-0.80; p=0.009) and longer mean operative duration (mean difference: 27.05, 95% CI 18.86-35.24; p<0.00001) were observed in patients with mesh rectopexy versus suture rectopexy. Both study groups, however, had no significant differences in constipation improvement and all secondary endpoints (all p>0.05). The laparoscopic mesh rectopexy was associated with a low postoperative rectal prolapse recurrence and a longer operative duration compared to laparoscopic suture rectopexy. Prospective randomized controlled trials should further evaluate mesh and suture rectopexy approaches for postoperative outcomes to inform the surgical management of complete rectal prolapse.

7.
Cell Rep ; 14(12): 2819-32, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26997270

RESUMO

Thymic epithelial cells (TECs) are critically required for T cell development, but the cellular mechanisms that maintain adult TECs are poorly understood. Here, we show that a previously unidentified subpopulation, EpCam(+)UEA1(-)Ly-51(+)PLET1(+)MHC class II(hi), which comprises <0.5% of adult TECs, contains bipotent TEC progenitors that can efficiently generate both cortical (c) TECs and medullary (m) TECs. No other adult TEC population tested in this study contains this activity. We demonstrate persistence of PLET1(+)Ly-51(+) TEC-derived cells for 9 months in vivo, suggesting the presence of thymic epithelial stem cells. Additionally, we identify cTEC-restricted short-term progenitor activity but fail to detect high efficiency mTEC-restricted progenitors in the adult thymus. Our data provide a phenotypically defined adult thymic epithelial progenitor/stem cell that is able to generate both cTECs and mTECs, opening avenues for improving thymus function in patients.


Assuntos
Células-Tronco/metabolismo , Timo/citologia , Animais , Feminino , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Fenótipo , Proteínas da Gravidez/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Células-Tronco/citologia , Transcriptoma
8.
PLoS One ; 11(3): e0151666, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26983083

RESUMO

Thymus function requires extensive cross-talk between developing T-cells and the thymic epithelium, which consists of cortical and medullary TEC. The transcription factor FOXN1 is the master regulator of TEC differentiation and function, and declining Foxn1 expression with age results in stereotypical thymic involution. Understanding of the dynamics of Foxn1 expression is, however, limited by a lack of single cell resolution data. We have generated a novel reporter of Foxn1 expression, Foxn1G, to monitor changes in Foxn1 expression during embryogenesis and involution. Our data reveal that early differentiation and maturation of cortical and medullary TEC coincides with precise sub-lineage-specific regulation of Foxn1 expression levels. We further show that initiation of thymic involution is associated with reduced cTEC functionality, and proportional expansion of FOXN1-negative TEC in both cortical and medullary sub-lineages. Cortex-specific down-regulation of Foxn1 between 1 and 3 months of age may therefore be a key driver of the early stages of age-related thymic involution.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Embrionário/fisiologia , Células Epiteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Timo/metabolismo , Envelhecimento/fisiologia , Animais , Linhagem da Célula/fisiologia , Regulação para Baixo , Fatores de Transcrição Forkhead/genética , Camundongos
9.
Nat Cell Biol ; 16(9): 902-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25150981

RESUMO

A central goal of regenerative medicine is to generate transplantable organs from cells derived or expanded in vitro. Although numerous studies have demonstrated the production of defined cell types in vitro, the creation of a fully intact organ has not been reported. The transcription factor forkhead box N1 (FOXN1) is critically required for development of thymic epithelial cells (TECs), a key cell type of the thymic stroma. Here, we show that enforced Foxn1 expression is sufficient to reprogramme fibroblasts into functional TECs, an unrelated cell type across a germ-layer boundary. These FOXN1-induced TECs (iTECs) supported efficient development of both CD4(+) and CD8(+) T cells in vitro. On transplantation, iTECs established a complete, fully organized and functional thymus, that contained all of the TEC subtypes required to support T-cell differentiation and populated the recipient immune system with T cells. iTECs thus demonstrate that cellular reprogramming approaches can be used to generate an entire organ, and open the possibility of widespread use of thymus transplantation to boost immune function in patients.


Assuntos
Fibroblastos/fisiologia , Fatores de Transcrição Forkhead/biossíntese , Timo/citologia , Animais , Diferenciação Celular , Células Cultivadas , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Feminino , Fatores de Transcrição Forkhead/genética , Expressão Gênica , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Medicina Regenerativa , Linfócitos T/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA