Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(4): e1010942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37027441

RESUMO

During chronic cystic fibrosis (CF) infections, evolved Pseudomonas aeruginosa antibiotic resistance is linked to increased pulmonary exacerbations, decreased lung function, and hospitalizations. However, the virulence mechanisms underlying worse outcomes caused by antibiotic resistant infections are poorly understood. Here, we investigated evolved aztreonam resistant P. aeruginosa virulence mechanisms. Using a macrophage infection model combined with genomic and transcriptomic analyses, we show that a compensatory mutation in the rne gene, encoding RNase E, increased pyoverdine and pyochelin siderophore gene expression, causing macrophage ferroptosis and lysis. We show that iron-bound pyochelin was sufficient to cause macrophage ferroptosis and lysis, however, apo-pyochelin, iron-bound pyoverdine, or apo-pyoverdine were insufficient to kill macrophages. Macrophage killing could be eliminated by treatment with the iron mimetic gallium. RNase E variants were abundant in clinical isolates, and CF sputum gene expression data show that clinical isolates phenocopied RNase E variant functions during macrophage infection. Together these data show how P. aeruginosa RNase E variants can cause host damage via increased siderophore production and host cell ferroptosis but may also be targets for gallium precision therapy.


Assuntos
Ferro , Infecções por Pseudomonas , Humanos , Ferro/metabolismo , Sideróforos/farmacologia , Sideróforos/metabolismo , Pseudomonas aeruginosa/metabolismo , Virulência , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/metabolismo
2.
Respir Res ; 21(1): 303, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208169

RESUMO

Pulmonary hypertension (PH) developing secondarily in pulmonary fibrosis (PF) patients (PF-PH) is a frequent co-morbidity. The high prevalence of PH in PF patients is very concerning since the presence of PH is a strong predictor of mortality in PF patients. Until recently, PH was thought to arise solely from fibrotic destruction of the lung parenchyma, leading to hypoxic vasoconstriction and loss of vascular bed density. Thus, potential cellular and molecular dysregulation of vascular remodeling as a driver of PF-PH has been under-investigated. The recent demonstrations that there is no correlation between the severity of the fibrosis and development of PH, along with the finding that significant vascular histological and molecular differences exist between patients with and without PH have shifted the etiological paradigm of PF-PH. This review aims to provide a comprehensive translational overview of PH in PF patients from clinical diagnosis and outcome to the latest understanding of the histology and molecular pathophysiology of PF-PH.


Assuntos
Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/patologia , Pulmão/patologia , Fibrose Pulmonar/complicações , Fibrose Pulmonar/patologia , Remodelação Vascular/fisiologia , Animais , Ecocardiografia/métodos , Humanos , Hipertensão Pulmonar/metabolismo , Mediadores da Inflamação/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Testes de Função Respiratória/métodos
3.
Anesthesiology ; 129(1): 154-162, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29620570

RESUMO

BACKGROUND: We have previously shown that intralipid (lipid emulsion) protects the heart against ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity. However, the precise underlying mechanisms are not fully understood. Here we explored the hypothesis that free fatty acid receptor-1 or G-protein-coupled receptor 40 is expressed in the heart and that cardioprotective effects of lipid emulsion are mediated through G-protein-coupled receptor 40 in two animal models of ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity. METHODS: Langendorff-perfused male mouse hearts were subjected to ischemia/reperfusion with lipid emulsion alone (1%) or with G-protein-coupled receptor 40 antagonist (GW1100, 10 µM). Additionally, cardiotoxicity was achieved in male rats with bupivacaine bolus (10 mg/kg, IV) followed by lipid emulsion alone (20%, 5 ml/kg bolus, and 0.5 ml · kg · min maintenance, IV) or with GW1100 pretreatment (2.5 mg/kg, IV). RESULTS: G-protein-coupled receptor 40 is expressed in rodent hearts. GW1100 abolished lipid emulsion-induced cardioprotection against ischemia/reperfusion in mice because rate pressure product and left ventricular developed pressure were lower than lipid emulsion alone (rate pressure product: 2,186 ± 1,783 [n = 7] vs. 11,607 ± 4,347 [n = 8]; left ventricular developed pressure: 22.6 ± 10.4 vs. 63.8 ± 20; P < 0.0001). Lipid emulsion + GW1100 also demonstrated reduced LV dP/dtmax and LV dP/dtmin (dP/dtmax = 749 ± 386 vs. 2,098 ± 792, P < 0.001; dP/dtmin = -443 ± 262 vs. -1,447 ± 546, P < 0.001). In bupivacaine-induced cardiotoxicity rat model, GW1100 pretreatment had no significant effect on heart rate (HR) and ejection fraction after 30 min (HR: 302 ± 17 vs. 312 ± 38; ejection fraction: 69 ± 3% vs. 73 ± 4%). GW1100 pretreatment, however, prevented lipid-rescue, with no recovery after 10 min. In the control group, lipid emulsion improved HR (215 ± 16 at 10 min) and fully rescued left ventricle function at 10 min (ejection fraction = 67 ± 8%, fractional shortening = 38 ± 6%). CONCLUSIONS: G-protein-coupled receptor 40 is expressed in the rodent heart and is involved in cardioprotection mediated by lipid emulsion against ischemia/reperfusion injury and bupivacaine-induced cardiotoxicity.


Assuntos
Benzoatos/farmacologia , Cardiotônicos/farmacologia , Emulsões Gordurosas Intravenosas/farmacologia , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/fisiologia , Animais , Células Cultivadas , Preparação de Coração Isolado/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Ratos , Ratos Sprague-Dawley
4.
Respir Res ; 18(1): 201, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29202826

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic pulmonary vascular disease characterized by increased pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Autonomic nervous system involvement in the pathogenesis of PAH has been demonstrated several years ago, however the extent of this involvement is not fully understood. PAH is associated with increased sympathetic nervous system (SNS) activation, decreased heart rate variability, and presence of cardiac arrhythmias. There is also evidence for increased renin-angiotensin-aldosterone system (RAAS) activation in PAH patients associated with clinical worsening. Reduction of neurohormonal activation could be an effective therapeutic strategy for PAH. Although therapies targeting adrenergic receptors or RAAS signaling pathways have been shown to reverse cardiac remodeling and improve outcomes in experimental pulmonary hypertension (PH)-models, the effectiveness and safety of such treatments in clinical settings have been uncertain. Recently, novel direct methods such as cervical ganglion block, pulmonary artery denervation (PADN), and renal denervation have been employed to attenuate SNS activation in PAH. In this review, we intend to summarize the multiple aspects of autonomic nervous system involvement in PAH and overview the different pharmacological and invasive strategies used to target autonomic nervous system for the treatment of PAH.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Sistema Renina-Angiotensina/fisiologia , Animais , Humanos , Hipertensão Pulmonar/diagnóstico , Artéria Pulmonar/fisiologia , Artéria Pulmonar/fisiopatologia , Ensaios Clínicos Controlados Aleatórios como Assunto/métodos , Disfunção Ventricular Direita/diagnóstico , Disfunção Ventricular Direita/fisiopatologia
5.
Circ Res ; 117(6): 525-35, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26224795

RESUMO

RATIONALE: Pulmonary arterial hypertension (PAH) is a vasculopathy characterized by enhanced pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and suppressed apoptosis. Decreased expression of microRNA-204 has been associated to this phenotype. By a still elusive mechanism, microRNA-204 downregulation promotes the expression of oncogenes, including nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. In cancer, increased expression of the epigenetic reader bromodomain-containing protein 4 (BRD4) sustains cell survival and proliferation. Interestingly, BRD4 is a predicted target of microRNA-204 and has binding sites on the nuclear factor of activated T cells promoter region. OBJECTIVE: To investigate the role of BRD4 in PAH pathogenesis. METHODS AND RESULTS: BRD4 is upregulated in lungs, distal PAs, and PASMCs of patients with PAH compared with controls. With mechanistic in vitro experiments, we demonstrated that BRD4 expression in PAH is microRNA-204 dependent. We further studied the molecular downstream targets of BRD4 by inhibiting its activity in PAH-PASMCs using a clinically available inhibitor JQ1. JQ1 treatment in PAH-PASMCs increased p21 expression, thus triggering cell cycle arrest. Furthermore, BRD4 inhibition, by JQ1 or siBRD4, decreased the expression of 3 major oncogenes, which are overexpressed in PAH: nuclear factor of activated T cells, B-cell lymphoma 2, and Survivin. Blocking this oncogenic signature led to decreased PAH-PASMC proliferation and increased apoptosis in a BRD4-dependent manner. Indeed, pharmacological JQ1 or molecular (siRNA) inhibition of BRD4 reversed this pathological phenotype in addition to restoring mitochondrial membrane potential and to increasing cells spare respiratory capacity. Moreover, BRD4 inhibition in vivo reversed established PAH in the Sugen/hypoxia rat model. CONCLUSIONS: BRD4 plays a key role in the pathological phenotype in PAH, which could offer new therapeutic perspectives for patients with PAH.


Assuntos
Epigênese Genética/fisiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Proteínas Nucleares/biossíntese , Artéria Pulmonar/metabolismo , Fatores de Transcrição/biossíntese , Adulto , Idoso , Animais , Proteínas de Ciclo Celular , Células Cultivadas , Feminino , Humanos , Hipertensão Pulmonar/patologia , Masculino , Pessoa de Meia-Idade , Artéria Pulmonar/patologia , Ratos
6.
Circulation ; 129(7): 786-97, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24270264

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is associated with sustained inflammation known to promote DNA damage. Despite these unfavorable environmental conditions, PAH pulmonary arterial smooth muscle cells (PASMCs) exhibit, in contrast to healthy PASMCs, a pro-proliferative and anti-apoptotic phenotype, sustained in time by the activation of miR-204, nuclear factor of activated T cells, and hypoxia-inducible factor 1-α. We hypothesized that PAH-PASMCs have increased the activation of poly(ADP-ribose) polymerase-1 (PARP-1), a critical enzyme implicated in DNA repair, allowing proliferation despite the presence of DNA-damaging insults, eventually leading to PAH. METHODS AND RESULTS: Human PAH distal pulmonary arteries and cultured PAH-PASMCs exhibit increased DNA damage markers (53BP1 and γ-H2AX) and an overexpression of PARP-1 (immunoblot and activity assay), in comparison with healthy tissues/cells. Healthy PASMCs treated with a clinically relevant dose of tumor necrosis factor-α harbored a similar phenotype, suggesting that inflammation induces DNA damage and PARP-1 activation in PAH. We also showed that PARP-1 activation accounts for miR-204 downregulation (quantitative reverse transcription polymerase chain reaction) and the subsequent activation of the transcription factors nuclear factor of activated T cells and hypoxia-inducible factor 1-α in PAH-PASMCs, previously shown to be critical for PAH in several models. These effects resulted in PASMC proliferation (Ki67, proliferating cell nuclear antigen, and WST1 assays) and resistance to apoptosis (terminal deoxynucleotidyl transferase dUTP nick end labeling and Annexin V assays). In vivo, the clinically available PARP inhibitor ABT-888 reversed PAH in 2 experimental rat models (Sugen/hypoxia and monocrotaline). CONCLUSIONS: These results show for the first time that the DNA damage/PARP-1 signaling pathway is important for PAH development and provide a new therapeutic target for this deadly disease with high translational potential.


Assuntos
Dano ao DNA/fisiologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Transdução de Sinais/fisiologia , Adulto , Idoso , Animais , Apoptose/fisiologia , Benzimidazóis/farmacologia , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Monocrotalina/farmacologia , Fatores de Transcrição NFATC/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/metabolismo , Ratos , Ratos Sprague-Dawley
8.
Nat Microbiol ; 9(3): 631-646, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38409256

RESUMO

The antibiotic cefiderocol hijacks iron transporters to facilitate its uptake and resists ß-lactamase degradation. While effective, resistance has been detected clinically with unknown mechanisms. Here, using experimental evolution, we identified cefiderocol resistance mutations in Pseudomonas aeruginosa. Resistance was multifactorial in host-mimicking growth media, led to multidrug resistance and paid fitness costs in cefiderocol-free environments. However, kin selection drove some resistant populations to cross-protect susceptible individuals from killing by increasing pyoverdine secretion via a two-component sensor mutation. While pyochelin sensitized P. aeruginosa to cefiderocol killing, pyoverdine and the enterobacteria siderophore enterobactin displaced iron from cefiderocol, preventing uptake by susceptible cells. Among 113 P. aeruginosa intensive care unit clinical isolates, pyoverdine production directly correlated with cefiderocol tolerance, and high pyoverdine producing isolates cross-protected susceptible P. aeruginosa and other Gram-negative bacteria. These in vitro data show that antibiotic cross-protection can occur via degradation-independent mechanisms and siderophores can serve unexpected protective cooperative roles in polymicrobial communities.


Assuntos
Antibacterianos , Sideróforos , Humanos , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Sideróforos/metabolismo , Sideróforos/farmacologia , Cefiderocol , Ferro/metabolismo , Enterobacteriaceae/metabolismo , Pseudomonas aeruginosa/metabolismo
9.
Res Sq ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292841

RESUMO

Antibiotic cross-protection enables resistant bacteria to protect other bacteria that would be otherwise susceptible to the drug. Cefiderocol is the first siderophore cephalosporin antibiotic approved for treating Gram-negative bacterial infections, including carbapenem-resistant Pseudomonas aeruginosa strains. While highly effective, CFDC resistance has been detected clinically, and mechanisms of resistance and cross-protection are not completely understood. In this study, we used experimental evolution and whole genome sequencing to identify cefiderocol resistance mechanisms and evaluated the trade-offs of evolving resistance. We found some cefiderocol-resistant populations evolved cross-protective social behavior, preventing cefiderocol killing of susceptible siblings. Notably, cross-protection was driven by increased secretion of bacterial iron-binding siderophores, which is unique from previously described antibiotic degradation mediated cross-protection. While concerning, we also showed that resistance can be selected against in drug-free environments. Deciphering the costs associated with antibiotic resistance might aid the development of evolution-informed therapeutic approaches to delay the evolution of antibiotic resistance.

10.
Antibiotics (Basel) ; 10(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34680745

RESUMO

Antibiotic-resistant Pseudomonas aeruginosa infections are the primary cause of mortality in people with cystic fibrosis (CF). Yet, it has only recently become appreciated that resistance mutations can also increase P. aeruginosa virulence, even in the absence of antibiotics. Moreover, the mechanisms by which resistance mutations increase virulence are poorly understood. In this study we tested the hypothesis that mutations affecting efflux pumps can directly increase P. aeruginosa virulence. Using genetics, physiological assays, and model infections, we show that efflux pump mutations can increase virulence. Mutations of the mexEF efflux pump system increased swarming, rhamnolipid production, and lethality in a mouse infection model, while mutations in mexR that increased expression of the mexAB-oprM efflux system increased virulence during an acute murine lung infection without affecting swarming or rhamnolipid gene expression. Finally, we show that an efflux pump inhibitor, which represents a proposed novel treatment approach for P. aeruginosa, increased rhamnolipid gene expression in a dose-dependent manner. This finding is important because rhamnolipids are key virulence factors involved in dissemination through epithelial barriers and cause neutrophil necrosis. Together, these data show how current and proposed future anti-Pseudomonal treatments may unintentionally make infections worse by increasing virulence. Therefore, treatments that target efflux should be pursued with caution.

11.
mBio ; 11(4)2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32769090

RESUMO

Coronavirus disease 2019 (COVID-19) is the greatest pandemic of our generation, with 16 million people affected and 650,000 deaths worldwide so far. One of the risk factors associated with COVID-19 is secondary bacterial pneumonia. In recent studies on COVID-19 patients, secondary bacterial infections were significantly associated with worse outcomes and death despite antimicrobial therapies. In the past, the intensive use of antibiotics during the severe acute respiratory syndrome coronavirus (SARS-CoV) pandemic led to increases in the prevalence of multidrug-resistant bacteria. The rising number of antibiotic-resistant bacteria and our decreasing capacity to eradicate them not only render us more vulnerable to bacterial infections but also weaken us during viral pandemics. The COVID-19 pandemic reminds us of the great health challenges we are facing, especially regarding antibiotic-resistant bacteria.


Assuntos
Infecções Bacterianas , Infecções por Coronavirus/epidemiologia , Coronavirus , Pandemias , Pneumonia Viral , Adulto , Bactérias , Betacoronavirus , COVID-19 , China , Humanos , Pacientes Internados , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2
12.
J Am Heart Assoc ; 9(2): e012063, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31914876

RESUMO

Background Recently, we and others have reported a causal role for oxidized lipids in the pathogenesis of pulmonary hypertension (PH). However, the role of low-density lipoprotein receptor (LDL-R) in PH is not known. Methods and Results We examined the role of LDL-R in the development of PH and determined the efficacy of high-density lipoprotein mimetic peptide 4F in mitigating PH. Explanted human lungs and plasma from patients with PH and control subjects were analyzed for gene expression, histological characteristics, and lipoprotein oxidation. Male LDL-R null (LDL-R knockout) mice (12-15 months old) were fed chow, Western diet (WD), WD with 4F, and WD with scramble peptide for 12 weeks. Serial echocardiography, cardiac catheterization, oxidized LDL assay, real-time quantitative reverse transcription-polymerase chain reaction, and histological analysis were performed. The effect of LDL-R knockdown and oxidized LDL on human pulmonary artery smooth muscle cell proliferation was assessed in vitro. LDL-R and CD36 expression levels were significantly downregulated in the lungs of patients with PH. Patients with PH also had increased lung lipid deposits, oxidized LDL, E06 immunoreactivity, and plasma oxidized LDL/LDL ratio. LDL-R knockout mice on WD developed PH, right ventricular hypertrophy, right ventricular dysfunction, pulmonary vascular remodeling, fibrosis, and lipid deposition in lungs, aortic atherosclerosis, and left ventricular dysfunction, which were prevented by 4F. Interestingly, PH in WD group preceded left ventricular dysfunction. Oxidized LDL or LDL-R knockdown significantly increased proliferation of human pulmonary artery smooth muscle cells in vitro. Conclusions Human PH is associated with decreased LDL-R in lungs and increased oxidized LDL in lungs and plasma. WD-fed LDL-R knockout mice develop PH and right ventricular dysfunction, implicating a role for LDL-R and oxidized lipids in PH.


Assuntos
Hemodinâmica , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Receptores de LDL/metabolismo , Remodelação Vascular , Animais , Apolipoproteína A-I/farmacologia , Antígenos CD36/metabolismo , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Hemodinâmica/efeitos dos fármacos , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/prevenção & controle , Lipoproteínas LDL/metabolismo , Masculino , Camundongos Knockout , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Receptores de LDL/genética , Transdução de Sinais , Remodelação Vascular/efeitos dos fármacos , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/metabolismo , Disfunção Ventricular Direita/fisiopatologia
13.
Hypertension ; 76(3): 985-996, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32713273

RESUMO

Pulmonary arterial hypertension (PAH) is a fatal disease characterized by increased mean pulmonary arterial pressure. Elevated plasma and lung concentrations of oxidized lipids, including 15-hydroxyeicosatetraenoic acid (15-HETE), have been demonstrated in patients with PAH and animal models. We previously demonstrated that feeding mice with 15-HETE is sufficient to induce pulmonary hypertension, but the mechanisms remain unknown. RNA sequencing data from the mouse lungs on 15-HETE diet revealed significant activation of pathways involved in both antigen processing and presentation and T cell-mediated cytotoxicity. Analysis of human microarray from patients with PAH also identified activation of identical pathways compared with controls. We show that in both 15-HETE-fed mice and patients with PAH, expression of the immunoproteasome subunit 5 is significantly increased, which was concomitant with an increase in the number of CD8/CD69 (cluster of differentiation 8 / cluster of differentiation 69) double-positive cells, as well as pulmonary arterial endothelial cell apoptosis in mice. Human pulmonary arterial endothelial cells cultured with 15-HETE were more prone to apoptosis when exposed to CD8 cells. Cultured intestinal epithelial cells secreted more oxidized lipids in response to 15-HETE, which is consistent with accumulation of circulating oxidized lipids in 15-HETE-fed mice. Administration of an apoA-I (apolipoprotein A-I) mimetic peptide, Tg6F (transgenic 6F), which is known to prevent accumulation of circulating oxidized lipids, not only inhibited pulmonary arterial endothelial cell apoptosis but also prevented and rescued 15-HETE-induced pulmonary hypertension in mice. In conclusion, our results suggest that (1) 15-HETE diet induces pulmonary hypertension by a mechanism that involves oxidized lipid-mediated T cell-dependent pulmonary arterial endothelial cell apoptosis and (2) Tg6F administration may be a novel therapy for treating PAH.


Assuntos
Apoptose , Células Endoteliais , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão Pulmonar/metabolismo , Peptídeos/farmacologia , Artéria Pulmonar , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Diferenciação Celular , Proliferação de Células , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão Pulmonar/prevenção & controle , Fatores Imunológicos/farmacologia , Imunoproteínas , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , Complexo de Endopeptidases do Proteassoma , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Linfócitos T
14.
Front Physiol ; 10: 1186, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616310

RESUMO

RATIONALE: Pulmonary hypertension (PH) is a rare but fatal disease characterized by elevated pulmonary pressures and vascular remodeling, leading to right ventricular failure and death. Recently, neuroinflammation has been suggested to be involved in the sympathetic activation in experimental PH. Whether PH is associated with neuroinflammation in the spinal cord has never been investigated. METHODS/RESULTS: PH was well-established in adult male Wistar rats 3-week after pulmonary endothelial toxin Monocrotaline (MCT) injection. Using the thoracic segments of the spinal cord, we found a 5-fold increase for the glial fibrillary acidic protein (GFAP) in PH rats compared to controls (p < 0.05). To further determine the region of the spinal cord where GFAP was expressed, we performed immunofluorescence and found a 3 to 3.5-fold increase of GFAP marker in the gray matter, and a 2 to 3-fold increase in the white matter in the spinal cord of PH rats compared to controls. This increase was due to PH (MCT vs. Control; p < 0.01), and there was no difference between the dorsal versus ventral region. PH rats also had an increase in the pro-inflammatory marker chemokine (C-C motif) ligand 3 (CCL3) protein expression (∼ 3-fold) and (2.8 to 4-fold, p < 0.01) in the white matter. Finally, angiogenesis was increased in PH rat spinal cords assessed by the adhesion molecule CD31 expression (1.5 to 2.3-fold, p < 0.01). CONCLUSION: We report for the first time evidence for neuroinflammation in the thoracic spinal cord of pulmonary hypertensive rats. The impact of spinal cord inflammation on cardiopulmonary function in PH remains elusive.

15.
EMBO Mol Med ; 11(9): e10061, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31468711

RESUMO

Pulmonary hypertension secondary to pulmonary fibrosis (PF-PH) is one of the most common causes of PH, and there is no approved therapy. The molecular signature of PF-PH and underlying mechanism of why pulmonary hypertension (PH) develops in PF patients remains understudied and poorly understood. We observed significantly increased vascular wall thickness in both fibrotic and non-fibrotic areas of PF-PH patient lungs compared to PF patients. The increased vascular wall thickness in PF-PH patients is concomitant with a significantly increased expression of the transcription factor Slug within the macrophages and its target prolactin-induced protein (PIP), an extracellular matrix protein that induces pulmonary arterial smooth muscle cell proliferation. We developed a novel translational rat model of combined PF-PH that is reproducible and shares similar histological features (fibrosis, pulmonary vascular remodeling) and molecular features (Slug and PIP upregulation) with human PF-PH. We found Slug inhibition decreases PH severity in our animal model of PF-PH. Our study highlights the role of Slug/PIP axis in PF-PH.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Fibrose Pulmonar/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Adulto , Idoso , Animais , Feminino , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/patologia , Ratos Wistar , Fatores de Transcrição da Família Snail/genética , Adulto Jovem
16.
Can J Cardiol ; 31(4): 407-15, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25630876

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by remodelling of pulmonary arteries caused by a proliferation/apoptosis imbalance within the vascular wall. This pathological phenotype seems to be triggered by different environmental stress and injury events such as increased inflammation, DNA damage, and epigenetic deregulation. It appears that one of the first hit to occur is endothelial cells (ECs) injury and apoptosis, which leads to paracrine signalling to other ECs, pulmonary artery smooth muscle cells (PASMCs), and fibroblasts. These signals promote a phenotypic change of surviving ECs by disturbing different signalling pathways leading to sustained vasoconstriction, proproliferative and antiapoptotic phenotype, deregulated angiogenesis, and formation of plexiform lesions. EC signalling also recruits proinflammatory cells, leading to pulmonary infiltration of lymphocytes, macrophages, and dendritic cells, sustaining the inflammatory environment and autoimmune response. Finally, EC signalling promotes proliferative and antiapoptotic PAH-PASMC phenotypes, which acquire migratory capacities, resulting in increased vascular wall thickness and muscularization of small pulmonary arterioles. Adaptation and remodelling of pulmonary circulation also involves epigenetic components, such as microRNA deregulation, DNA methylation, and histone modification. This review will focus on the different cellular and epigenetic aspects including EC stress response, molecular mechanisms contributing to PAH-PASMC and PAEC proliferation and resistance to apoptosis, as well as epigenetic control involved in adaptation and remodelling of the pulmonary circulation in PAH.


Assuntos
Adaptação Fisiológica/fisiologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar/fisiologia , Pressão Propulsora Pulmonar , Remodelação Vascular/fisiologia , Humanos
17.
Drug Discov Today ; 19(8): 1264-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24881781

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by progressive increase in pulmonary vascular resistance leading to right ventricular hypertrophy and failure. There is a need to find new biomarkers to detect PAH at its early stages and also for new, more effective treatments for this disease. miRNAs have emerged as key players in cardiovascular diseases and cancer development and progression and, more recently, in PAH pathogenesis. In this review, we focus on the potential of miRNAs as biomarkers and new therapeutic targets for PAH.


Assuntos
Biomarcadores/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Humanos , Hipertensão Pulmonar/patologia
18.
PLoS One ; 8(9): e75099, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24040390

RESUMO

The reduction of pre-enkephalin (pENK) mRNA expression might be an early sign of striatal neuronal dysfunction in Huntington's disease (HD), due to mutated huntingtin protein. Indeed, striatopallidal (pENK-containing) neurodegeneration occurs at earlier stage of the disease, compare to the loss of striatonigral neurons. However, no data are available about the functional role of striatal pENK in HD. According to the neuroprotective properties of opioids that have been recognized recently, the objective of this study was to investigate whether striatal overexpression of pENK at early stage of HD can improve motor dysfunction, and/or reduce striatal neuronal loss in the R6/2 transgenic mouse model of HD. To achieve this goal recombinant adeno-associated-virus (rAAV2)-containing green fluorescence protein (GFP)-pENK was injected bilaterally in the striatum of R6/2 mice at 5 weeks old to overexpress opioid peptide pENK. Striatal injection of rAAV2-GFP was used as a control. Different behavioral tests were carried out before and/or after striatal injections of rAAV2. The animals were euthanized at 10 weeks old. Our results demonstrate that striatal overexpression of pENK had beneficial effects on behavioral symptoms of HD in R6/2 by: delaying the onset of decline in muscular force; reduction of clasping; improvement of fast motor activity, short-term memory and recognition; as well as normalization of anxiety-like behavior. The improvement of behavioral dysfunction in R6/2 mice having received rAAV2-GFP-pENK associated with upregulation of striatal pENK mRNA; the increased level of enkephalin peptide in the striatum, globus pallidus and substantia nigra; as well as the slight increase in the number of striatal neurons compared with other groups of R6/2. Accordingly, we suggest that at early stage of HD upregulation of striatal enkephalin might play a key role at attenuating illness symptoms.


Assuntos
Corpo Estriado/metabolismo , Encefalinas/metabolismo , Regulação da Expressão Gênica , Doença de Huntington/tratamento farmacológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Globo Pálido/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteína Huntingtina , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , RNA Mensageiro/metabolismo , Receptores Opioides/metabolismo , Substância Negra/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA