Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 103(5): 1455-1482, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37526673

RESUMO

Like almost all cancer types, timely diagnosis is needed for leukemias to be effectively cured. Drug efflux, attenuated drug uptake, altered drug metabolism, and epigenetic alterations are just several of the key mechanisms by which drug resistance develops. All of these mechanisms are orchestrated by up- and downregulators, in which non-coding RNAs (ncRNAs) do not encode specific proteins in most cases; albeit, some of them have been found to exhibit the potential for protein-coding. Notwithstanding, ncRNAs are chiefly known for their contribution to the regulation of physiological processes, as well as the pathological ones, such as cell proliferation, apoptosis, and immune responses. Specifically, in the case of leukemia chemo-resistance, ncRNAs have been recognized to be responsible for modulating the initiation and progression of drug resistance. Herein, we comprehensively reviewed the role of ncRNAs, specifically its effect on molecular mechanisms and signaling pathways, in the development of leukemia drug resistance.


Assuntos
Leucemia , MicroRNAs , Neoplasias , Humanos , RNA não Traduzido/genética , Transdução de Sinais/genética , Leucemia/tratamento farmacológico , Leucemia/genética , Resistência a Medicamentos , MicroRNAs/metabolismo
2.
Cell Commun Signal ; 22(1): 107, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341592

RESUMO

Cervical cancer (CC) is a common gynecologic malignancy, accounting for a significant proportion of women death worldwide. Human papillomavirus (HPV) infection is one of the major etiological causes leading to CC onset; however, genetic, and epigenetic factors are also responsible for disease expansion. Circular RNAs (circRNAs), which are known as a particular subset of non-coding RNA (ncRNA) superfamily, with covalently closed loop structures, have been reported to be involved in the progression of diverse diseases, especially neoplasms. In this framework, abnormally expressed circRNAs are in strong correlation with CC pathogenesis through regulating substantial signaling pathways. Also, these RNA molecules can be considered as promising biomarkers and therapeutic targets for CC diagnosis/prognosis and treatment, respectively. Herein, we first review key molecular mechanisms, including Wnt/ß-catenin, MAPK, and PI3K/Akt/mTOR signaling pathways, as well as angiogenesis and metastasis, by which circRNAs interfere with CC development. Then, diagnostic, prognostic, and therapeutic potentials of these ncRNA molecules will be highlighted in depth.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , RNA Circular/genética , Infecções por Papillomavirus/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
3.
Diabetes Obes Metab ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118207

RESUMO

AIM: To investigate the effects of ß-hydroxybutyrate (BHB) and melatonin on brown adipose tissue (BAT) plasticity in rats fed a high-fat diet (HFD). METHODS: We employed a 7-week experimental design for a study on 30 male Sprague-Dawley rats divided into five groups: (1) a control-diet fed group; (2) a high-fat diet (HFD)-fed group; (3) a group that received an HFD and a BHB solution in their drinking water; (4) a group that received an HFD with 10 mg/kg/day melatonin in their drinking water; and (5) a group that received an HFD and were also treated with the combination of BHB and melatonin. Following the treatment period, biochemical indices, gene expression levels of key thermogenic markers (including uncoupling protein 1 [UCP1], PR domain containing 16 [PRDM16], Cidea, fat-specific protein 27 [Fsp27], and metallothionein 1 [MT1]), and stereological assessments of BAT were evaluated. RESULTS: Treatment with BHB and melatonin significantly boosted blood ketone levels, improved lipid profiles, and reduced weight gain from an HFD. It also downregulated genes linked to WAT, namely, Cidea and Fsp27, and upregulated key BAT markers, including UCP1, PRDM16 and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha. Additionally, the co-treatment increased MT1 receptor expression and enhanced the structural density of BAT. CONCLUSION: The combined oral administration of BHB and melatonin successfully prevented the whitening of BAT in obese rats fed an HFD, indicating its potential as a therapeutic strategy for obesity-related BAT dysfunction. The synergistic effects of this treatment underscore the potential of a combined approach to address BAT dysfunction in obesity.

4.
Biochem Biophys Res Commun ; 672: 161-167, 2023 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-37354609

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the commonest neoplasms worldwide, which its pathogenesis is strongly correlated with p53 mutations. Antioxidants are believed to decelerate the CRC progression, possibly through interfering with p53 and its downstream target genes and mechanisms. Regarding the potential antioxidant effects of bilirubin, as an incredible endogenous antioxidant, we sought to investigate how bilirubin affected the expression levels of p53 protein and its downstream target genes, including Mdm2, Bcl-2, BECN1 and LC3, in LS180 and SW480 cell culture models of CRC. METHODS AND RESULTS: Using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide) assay, 50 and 100 µM concentrations of bilirubin were determined to be non-toxic for both LS180 and SW480 cell lines. Western blot analysis was employed to evaluate the protein expression levels of p53. The results revealed that p53 protein levels were higher in LS180 cells treated with bilirubin compared to the control group. Notwithstanding, in SW480 cells, no considerable changes were observed in p53 protein levels of treated cells compared to the control ones. The quantitative reverse transcriptase-polymerase chain reaction (q RT-PCR) method was used to measure the mRNA expression levels of the apoptosis/autophagy-related genes, Mdm2, Bcl-2, BECN1, and LC3 , as the p53's downstream target genes. Consequently, the expression of Bcl-2 and Mdm2 genes were affected by p53, while BECN1 and LC3 expression levels were decreased in both cell lines. CONCLUSION: Bilirubin is an endogenous antioxidant with significant anti-tumor effects in the studied CRC cell lines, probably through the regulation of p53 protein expression levels and subsequent control of apoptosis and autophagy, as two key processes involved in cell survival and progression of tumor cells.


Assuntos
Antioxidantes , Neoplasias Colorretais , Humanos , Antioxidantes/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Bilirrubina/metabolismo , Linhagem Celular Tumoral , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Técnicas de Cultura de Células , Neoplasias Colorretais/patologia , Autofagia , Proliferação de Células
5.
Mol Biol Rep ; 50(5): 4411-4422, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36971910

RESUMO

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is defined as the most prevalent hepatic disorder that affects a significant population worldwide. There are several genes/proteins, involving in the modulation of NAFLD pathogenesis; sirtuin1 (SIRT1), TP53-inducible regulator gene (TIGAR), and autophagy-related gene 5 (Atg5) are considered a chief group of these modulators that principally act by regulating the hepatic lipid metabolism, as well as preventing the lipid accumulation. Surprisingly, bilirubin, especially in its unconjugated form, might be able to alleviate NAFLD progression by decreasing lipid accumulation and regulating the expression levels of the above-stated genes. METHODS AND RESULTS: Herein, the interactions between bilirubin and the corresponding genes' products were first analyzed by docking assessments. Afterwards, HepG2 cells were cultured under the optimum conditions, and then were incubated with high concentrations of glucose to induce NAFLD. After treating normal and fatty liver cells with particular bilirubin concentrations for 24- and 48-hour periods, 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) assay, colorimetric method, and quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) were employed to assess cell viability status, intracellular triglycerides content, and mRNA expression levels of the genes, respectively. Intracellular lipid accumulation of HepG2 cells was significantly decreased after treating with bilirubin. Bilirubin also increased SIRT1 and Atg5 gene expression levels in fatty liver cells. TIGAR gene expression levels were variable upon the conditions and the cell type, suggesting a dual role for TIGAR during the NAFLD pathogenesis. CONCLUSION: Our findings indicate the potential of bilirubin in the prevention from or amelioration of NAFLD through influencing SIRT1-related deacetylation and the process of lipophagy, as well as decreasing the intrahepatic lipid content. In vitro model of NAFLD was treated with unconjugated bilirubin under the optimal conditions.Desirably, bilirubin moderated the accumulation of triglycerides within the cells possibly through modulation of the expression of SIRT1, Atg5, and TIGAR genes. In the context, bilirubin was shown to increase the expression levels of SIRT1 and Atg5, while the expression of TIGAR was demonstrated to be either increased or decreased, depending on the treatment conditions. Created with BioRender.com.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos/genética , Triglicerídeos/metabolismo , Fatores de Transcrição/metabolismo , Técnicas de Cultura de Células , Camundongos Endogâmicos C57BL , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo
6.
Biotechnol Appl Biochem ; 70(3): 1044-1056, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36445196

RESUMO

The significant role of microRNAs in regulating gene expression and in disease tracking has handed the possibility of robust and accurate diagnosis of various diseases. Measurement of these biomarkers has also had a significant impact on the preparation of natural samples. Discovery of miRNAs is a major challenge due to their small size in the real sample and their short length, which is generally measured by complex and expensive methods. Electrochemical nanobiosensors have made significant progress in this field. Due to the delicate nature of nerve tissue repair and the significance of rapid-fire feature of neurodegenerative conditions, these biosensors can be reliably promising. This review presents advances in the field of neurodegenerative diseases diagnostics. At the same time, there are still numerous openings in this field that are a bright prospect for researchers in the rapid-fire opinion of neurological diseases and indeed nerve tissue repair.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Doenças Neurodegenerativas , Humanos , MicroRNAs/genética , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/genética , Técnicas Eletroquímicas , Biomarcadores
7.
Biotechnol Appl Biochem ; 70(1): 318-329, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35484728

RESUMO

Testosterone is an anabolic steroid and a major sex hormone in males. It plays vital roles, including developing the testis, penis, and prostate, increasing muscle and bone, and sperm production. In both men and women, testosterone levels should be in normal ranges. Besides, testosterone and its analogs are major global contributors to doping in sport. Due to the importance of testosterone testing, novel, accurate biosensors have been developed. This review summarizes the various methods for testosterone measurement. Also, recent optical and electrochemical approaches for the detection of testosterone and its analogs have been discussed.


Assuntos
Técnicas Biossensoriais , Sêmen , Humanos , Masculino , Feminino , Testosterona
8.
J Cell Physiol ; 237(4): 2095-2106, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35128660

RESUMO

Lung cancer therapeutic resistance, especially chemoresistance, is a key issue in the management of this malignancy. Despite the development of novel molecularly targeted drugs to promote therapeutic efficacy, 5-year survival of lung cancer patients is still dismal. Molecular studies through the recent years have fortunately presented multiple genes and signaling pathways, which contribute to lung cancer chemoresistance, providing a better perception of the biology of tumor cells, as well as the molecular mechanisms involved in their resistance to chemotherapeutic agents. Among those mechanisms, transfer of extracellular vesicles, such as exosomes, between cancer cells and the surrounding noncancerous ones is considered as an emerging route. Exosomes can desirably function as signaling vesicles to transmit multiple molecules from normal cells to cancer cells and their microenvironment, or vice versa. Using this ability, exosomes may affect the cancer cells' chemoresistance/chemosensitivity. Recently, noncoding RNAs (esp. microRNAs and long noncoding RNAs), as key molecules transferred by exosomes, have been reported to play a substantial role in the process of drug resistance, through modulation of various proteins and their corresponding genes. Accordingly, the current review principally aims to highlight exosomal micro- and long noncoding RNAs involved in lung cancer chemoresistance. Moreover, major molecular mechanisms, which connect corresponding RNA molecules to drug resistance, will briefly be addressed, for better clarifying of possible roles of exosomal noncoding RNAs in promoting the effectiveness of lung cancer therapy.


Assuntos
Exossomos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA não Traduzido/metabolismo , Microambiente Tumoral/genética
9.
J Neurosci Res ; 100(9): 1775-1790, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35642104

RESUMO

Parkinson's disease (PD), as a debilitating neurodegenerative disease, particularly affects the elderly population, and is clinically identified by resting tremor, rigidity, and bradykinesia. Pathophysiologically, PD is characterized by an early loss of dopaminergic neurons in the Substantia nigra pars compacta, accompanied by the extensive aggregation of alpha-synuclein (α-Syn) in the form of Lewy bodies. The onset of PD has been reported to be influenced by multiple biological molecules. In this context, circular RNAs (circRNAs), as tissue-specific noncoding RNAs with closed structures, have been recently demonstrated to involve in a set of PD's pathogenic processes. These RNA molecules can either up- or downregulate the expression of α-Syn, as well as moderating its accumulation through different regulatory mechanisms, in which targeting microRNAs (miRNAs) is considered the most common pathway. Since circRNAs have prominent structural and biological characteristics, they could also be considered as promising candidates for PD diagnosis and treatment. Unfortunately, PD has become a global health concern, and a large number of its pathogenic processes are still unclear; thus, it is crucial to elucidate the ambiguous aspects of PD pathophysiology to improve the efficiency of diagnostic and therapeutic strategies. In line with this fact, the current review aims to highlight the interplay between circRNAs and PD pathogenesis, and then discusses the diagnostic and therapeutic potential of circRNAs in PD progression. This study will thus be the first of its kind reviewing the relationship between circRNAs and PD.


Assuntos
MicroRNAs , Doenças Neurodegenerativas , Doença de Parkinson , Idoso , Neurônios Dopaminérgicos/metabolismo , Humanos , MicroRNAs/genética , Doenças Neurodegenerativas/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , RNA Circular/genética , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
10.
Cell Commun Signal ; 20(1): 13, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090496

RESUMO

Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/ß-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Criança , Glioblastoma/patologia , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , RNA Circular/genética
11.
Mol Biol Rep ; 49(3): 2421-2432, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34850336

RESUMO

Resistance of gastrointestinal (GI) cancer cells to therapeutic agents are one of the major problems in treating this type of cancer. Although the exact mechanism of drug resistance has not yet been fully elucidated, various factors have been identified as contributing factors involved in this process. Several studies have revealed the role of exosomes, especially exosomal microRNAs (miRNAs), in GI tumorigenesis, invasion, angiogenesis, and drug resistance. Exosomes, a type of small extracellular vesicles (EVs), are originated from endosomes and are released into the extracellular environment and body fluids by different cell types. Exosomes mediate cell-cell communication by transferring different cargos, including miRNAs, between parent and recipient cells. Therefore, identifying these exosomal miRNAs and their functions in GI cancers might provide new clues to further explore the secret of this process and thus help in drug-resistance management. This review article will discuss the roles of exosomal miRNAs and their mechanisms of action in drug resistance of different types of GI cancer cells (e.g., stomach, esophagus, liver, pancreas, and colon) to therapeutic agents.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Neoplasias , Resistencia a Medicamentos Antineoplásicos/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , MicroRNAs/metabolismo , Neoplasias/metabolismo
12.
Biotechnol Appl Biochem ; 69(4): 1633-1645, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34342377

RESUMO

Caspase-3, a cysteine-aspartic acid protease, has recently attracted much attention because of its incredible roles in tissue differentiation, regeneration, and neural development. This enzyme is a key zymogen in cell apoptosis and is not activated until it is cleaved by initiator caspases during apoptotic flux. Since caspase-3 has represented valuable capabilities in the field of medical research, biotechnological aspects of this enzyme, including the production of recombinant type, protein engineering, and designing delivery systems, have been considered as emerging therapeutic strategies in treating the apoptosis-related disorders. To date, several advances have been made in the therapeutic use of caspase-3 in the management of some diseases such as cancers, heart failure, and neurodegenerative disorders. In the current review, we intend to discuss the caspase-3's structure, functions, therapeutic applications, as well as its molecular cloning, protein engineering, and relevant delivery systems.


Assuntos
Apoptose , Caspases , Caspase 3 , Caspases/metabolismo
13.
Biotechnol Appl Biochem ; 69(6): 2658-2672, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34997643

RESUMO

Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.


Assuntos
Poluentes Ambientais , Lacase , Lacase/química , Biotecnologia , Fungos , Biodegradação Ambiental
14.
Biotechnol Appl Biochem ; 69(3): 939-950, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33840140

RESUMO

Glucose oxidase is a subset of oxidoreductase enzymes that catalyzes the transfer of electrons from an oxidant to a reductant. Glucose oxidases use oxygen as an external electron acceptor that releases hydrogen peroxide (H2 O2 ). Glucose oxidase has many applications in commercial processes, including improving the color and taste, increasing the persistence of food materials, removing the glucose from the dried egg, and eliminating the oxygen from different juices and beverages. Moreover, glucose oxidase, along with catalase, is used in glucose testing kits (especially in biosensors) to detect and measure the presence of glucose in industrial and biological solutions (e.g., blood and urine specimens). Hence, glucose oxidase is a valuable enzyme in the industry and medical diagnostics. Therefore, evaluating the structure and function of glucose oxidase is crucial for modifying as well as improving its catalytic properties. Finding different sources of glucose oxidase is an effective way to find the type of enzyme with the desired catalysis. Besides, the recombinant production of glucose oxidase is the best approach to produce sufficient amounts of glucose oxidase for various uses. Accordingly, the study of various aspects of glucose oxidase in biotechnology and bioprocessing is crucial.


Assuntos
Técnicas Biossensoriais , Glucose Oxidase , Catálise , Glucose , Glucose Oxidase/química , Oxigênio
15.
Cell Biochem Funct ; 40(3): 232-247, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35258097

RESUMO

Traumatic brain injury (TBI) is one of the most concerning health issues in which the normal brain function may be disrupted as a result of a blow, bump, or jolt to the head. Loss of consciousness, amnesia, focal neurological defects, alteration in mental state, and destructive diseases of the nervous system such as cognitive impairment, Parkinson's, and Alzheimer's disease. Parkinson's disease is a chronic progressive neurodegenerative disorder, characterized by the early loss of striatal dopaminergic neurons. TBI is a major risk factor for Parkinson's disease. Existing therapeutic approaches have not been often effective, indicating the necessity of discovering more efficient therapeutic targets. The mammalian target of rapamycin (mTOR) signaling pathway responds to different environmental cues to modulate a large number of cellular processes such as cell proliferation, survival, protein synthesis, autophagy, and cell metabolism. Moreover, mTOR has been reported to affect the regeneration of the injured nerves throughout the central nervous system (CNS). In this context, recent evaluations have revealed that mTOR inhibitors could be potential targets to defeat a group of neurological disorders, and thus, a number of clinical trials are investigating their efficacy in treating dementia, autism, epilepsy, stroke, and brain injury, as irritating neurological defects. The current review describes the interplay between mTOR signaling and major CNS-related disorders (esp. neurodegenerative diseases), as well as the mTOR signaling-TBI relationship. It also aims to discuss the promising therapeutic capacities of mTOR inhibitors during the TBI.


Assuntos
Lesões Encefálicas Traumáticas , Doenças do Sistema Nervoso Central , Doenças Neurodegenerativas , Doença de Parkinson , Lesões Encefálicas Traumáticas/tratamento farmacológico , Humanos , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
16.
Cell Mol Biol Lett ; 27(1): 65, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922753

RESUMO

Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood-brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Adulto , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Carcinogênese , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Humanos , MicroRNAs/genética
17.
Mol Cell Biochem ; 476(11): 4081-4092, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34273059

RESUMO

Glioma, as one of the most severe human malignancies, is defined as the Central Nervous System's (CNS) tumors. Glioblastoma (GBM) in this regard, is the most malignant type of gliomas. There are multiple therapeutic strategies to cure GBM, for which chemotherapy is often the first-line treatment. Still, various cellular processes, such as uncontrolled proliferation, invasion and metastasis, may disturb the treatment efficacy. Drug resistance is another process in this way, which can also cause undesirable effects. Thereupon, identifying the mechanisms, involved in developing drug resistance and the relevant mechanisms can be very helpful in GBM management. The discovery of exosomal non-coding RNAs (ncRNAs), RNA molecules that can be transferred between the cells and different tissues using the exosomes, was a milestone in this regard. It has been revealed that the key exosomal ncRNAs, including circular RNAs, microRNAs, and long ncRNAs, are able to modulate GBM drug resistance through different signaling pathways or by affecting regulatory proteins and their corresponding genes. Nowadays, researchers are trying to overcome the limitations of chemotherapy by targeting these RNA molecules. Accordingly, this review aims to clarify the substantial roles of exosomal ncRNAs in GBM drug resistance and involved mechanisms.


Assuntos
Exossomos/genética , Glioblastoma/tratamento farmacológico , MicroRNAs/genética , RNA Longo não Codificante/genética , Biomarcadores Tumorais/genética , Resistencia a Medicamentos Antineoplásicos , Exossomos/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Terapia de Alvo Molecular
18.
Cell Biochem Funct ; 39(8): 955-969, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34708430

RESUMO

Infertility impacts a considerable number of women worldwide, and it affects different aspects of family life and society. Although female infertility is known as a multifactorial disorder, there are strong genetic and epigenetic bases. Studies revealed that miRNAs play critical roles in initiation and development of female infertility related disorders. Early diagnosis and control of these diseases is an essential key for improving disease prognosis and reducing the possibility of infertility and other side effects. Investigating the possible use of miRNAs as biomarkers and therapeutic options is valuable, and it merits attention. Thus, in this article, we reviewed research associated with female diseases and highlighted microRNAs that are related to the polycystic ovary syndrome (up to 30 miRNAs), premature ovarian failure (10 miRNAs), endometriosis (up to 15 miRNAs), uterine fibroids (up to 15 miRNAs), endometrial polyp (3 miRNAs), and pelvic inflammatory (6 miRNAs), which are involved in one or more ovarian or uterine disease-causing processes.


Assuntos
Infertilidade Feminina/genética , MicroRNAs/genética , Animais , Feminino , Humanos
19.
Artigo em Inglês | MEDLINE | ID: mdl-37357514

RESUMO

Inborn errors of metabolism (IEMs) are a vast array of inherited/congenital disorders, affecting a wide variety of metabolic pathways and/or biochemical processes inside the cells. Although IEMs are usually rare, they can be represented as serious health problems. During the neonatal period, these inherited defects can give rise to almost all key signs of liver malfunction, including jaundice, coagulopathy, hepato- and splenomegaly, ascites, etc. Since the liver is a vital organ with multiple synthetic, metabolic, and excretory functions, IEM-related hepatic dysfunction could seriously be considered life-threatening. In this context, the identification of those hepatic manifestations and their associated characteristics may promote the differential diagnosis of IEMs immediately after birth, making therapeutic strategies more successful in preventing the occurrence of subsequent events. Among all possible liver defects caused by IEMs, cholestatic jaundice, hepatosplenomegaly, and liver failure have been shown to be manifested more frequently. Therefore, the current study aims to review substantial IEMs that mostly result in the aforementioned hepatic disorders, relying on clinical principles, especially through the first years of life. In this article, a group of uncommon hepatic manifestations linked to IEMs is also discussed in brief.


Assuntos
Hepatopatias , Erros Inatos do Metabolismo , Humanos , Erros Inatos do Metabolismo/complicações , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/genética , Hepatopatias/diagnóstico , Hepatopatias/etiologia , Redes e Vias Metabólicas
20.
Clin Chim Acta ; 560: 119753, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38821336

RESUMO

Irritable bowel syndrome (IBS) is a chronic gastrointestinal (GI) disorder characterized by altered bowel habits and abdominal discomfort during defecation. It significantly impacts life quality and work productivity for those affected. Global data suggests a slightly higher prevalence in females than in males. Today, unambiguous diagnosis of IBS remains challenging due to the absence of a specific biochemical, histopathological, or radiological test. Current diagnosis relies heavily on thorough symptom evaluation. Efforts by the Rome committees have established standardized diagnostic criteria (Rome I-IV), improving consistency and clinical applicability. Recent studies in this framework, seem to have successfully employed metabolomics techniques to identify distinct metabolite profiles in breath and stool samples of IBS patients, differentiating them from healthy controls and those with other functional GI disorders, such as inflammatory bowel disease (IBD). Building on this success, researchers are investigating the presence of similar metabolites in easily accessible biofluids such as urine, potentially offering a less invasive diagnostic approach. Accordingly, this review focuses on key metabolites specifically detected in IBS patients' biological specimens, with a focus on urinary metabolites, using various methods, particularly mass spectrometry (MS)-based techniques, including gas chromatography-MS (GC-MS), liquid chromatography-tandem MS (LC-MS/MS), and capillary electrophoresis-MS (CE-MS) metabolomics assays. These findings may make provision for a new set of non-invasive biomarkers for IBS diagnosis and management.


Assuntos
Biomarcadores , Síndrome do Intestino Irritável , Metabolômica , Síndrome do Intestino Irritável/diagnóstico , Síndrome do Intestino Irritável/metabolismo , Humanos , Biomarcadores/urina , Biomarcadores/metabolismo , Biomarcadores/análise , Metabolômica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA