Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Biochem ; 120(3): 3887-3897, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30270456

RESUMO

Alternatives to the cap mechanism in translation are often used by viruses and cells to allow them to synthesize proteins in events of stress and viral infection. In Drosophila there are hundreds of polycistronic messenger RNA (mRNA), and various mechanisms are known to achieve this. However, proteins in a same mRNA often work in the same cellular mechanism, this is not the case for Drosophila's Swc6/p18Hamlet homolog Dmp18, part of the SWR1 chromatin remodeling complex, who is encoded in a bicistronic mRNA next to Dmp8 (Dmp8-Dmp18 transcript), a structural component of transcription factor TFIIH. The organization of these two genes as a bicistron is conserved in all arthropods, however the length of the intercistronic sequence varies from more than 90 to 2 bases, suggesting an unusual translation mechanism for the second open reading frame. We found that even though translation of Dmp18 occurs independently from that of Dmp8, it is necessary for Dmp18 to be in that conformation to allow its correct translation during cellular stress caused by damage via heat-shock and UV radiation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Fator de Transcrição TFIIH/genética , Sequência de Aminoácidos , Animais , Cromatina/química , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Temperatura Alta , Larva/genética , Larva/metabolismo , Fases de Leitura Aberta , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Fator de Transcrição TFIIH/metabolismo , Raios Ultravioleta
2.
Cancer Cell Int ; 19: 214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31427899

RESUMO

BACKGROUND: Gene expression profiles have demonstrated that miR-21 expression is altered in almost all types of cancers and it has been classified as an oncogenic microRNA. Persistent HPV infection is the main etiologic agent in cervical cancer and induces genetic instability, including disruption of microRNA gene expression. In the present study, we analyzed the underlying mechanism of how AP-1 transcription factor can active miR-21 gene expression in cervical cancer cells. METHODS: To identify that c-Fos and c-Jun regulate the expression of miR-21 we performed RT-qPCR and western blot assays. We analyzed the interaction of AP-1 with miR-21 promoter by EMSA and ChIP assays and determined the mechanism of its regulation by reporter construct plasmids. We identified the nuclear translocation of c-Fos and c-Jun by immunofluorescence microscopy assays. RESULTS: We demonstrated that c-Fos and c-Jun proteins are expressed and regulate the expression of miR-21 in cervical cancer cells. DNA sequence analysis revealed the presence of AP-1 DNA-binding sites in the human miR-21 promoter region. EMSA analyses confirmed the interactions of the miR-21 upstream transcription factor AP-1. ChIP assays further showed the binding of c-Fos to AP-1 sequences from the miR-21 core promoter in vivo. Functional analysis of AP-1 sequences of miR-21 in reporter plasmids demonstrated that these sequences increase the miR-21 promoter activation. CONCLUSIONS: Our findings suggest a physical interaction and functional cooperation between AP-1 transcription factor in the miR-21 promoter and may explain the effect of AP-1 on miR-21 gene expression in cervical cancer cells.

3.
Chromosoma ; 126(6): 697-712, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28688038

RESUMO

Telomeres are important contributors to genome stability, as they prevent linear chromosome end degradation and contribute to the avoidance of telomeric fusions. An important component of the telomeres is the heterochromatin protein 1a (HP1a). Mutations in Su(var)205, the gene encoding HP1a in Drosophila, result in telomeric fusions, retrotransposon regulation loss and larger telomeres, leading to chromosome instability. Previously, it was found that several proteins physically interact with HP1a, including dXNP and dAdd1 (orthologues to the mammalian ATRX gene). In this study, we found that mutations in the genes encoding the dXNP and dAdd1 proteins affect chromosome stability, causing chromosomal aberrations, including telomeric defects, similar to those observed in Su(var)205 mutants. In somatic cells, we observed that dXNP and dAdd1 participate in the silencing of the telomeric HTT array of retrotransposons, preventing anomalous retrotransposon transcription and integration. Furthermore, the lack of dAdd1 results in the loss of HP1a from the telomeric regions without affecting other chromosomal HP1a binding sites; mutations in dxnp also affected HP1a localization but not at all telomeres, suggesting a specialized role for dAdd1 and dXNP proteins in locating HP1a at the tips of the chromosomes. These results place dAdd1 as an essential regulator of HP1a localization and function in the telomere heterochromatic domain.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Instabilidade Genômica , Telômero/genética , Telômero/metabolismo , Animais , Animais Geneticamente Modificados , Homólogo 5 da Proteína Cromobox , Aberrações Cromossômicas , Feminino , Inativação Gênica , Heterocromatina/metabolismo , Perda de Heterozigosidade , Masculino , Mutação , Transporte Proteico , Retroelementos
4.
Annu Rev Nutr ; 37: 207-223, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28564555

RESUMO

The vitamin biotin is an essential nutrient for the metabolism and survival of all organisms owing to its function as a cofactor of enzymes collectively known as biotin-dependent carboxylases. These enzymes use covalently attached biotin as a vector to transfer a carboxyl group between donor and acceptor molecules during carboxylation reactions. In human cells, biotin-dependent carboxylases catalyze key reactions in gluconeogenesis, fatty acid synthesis, and amino acid catabolism. Biotin is attached to apocarboxylases by a biotin ligase: holocarboxylase synthetase (HCS) in mammalian cells and BirA in microbes. Despite their evolutionary distance, these proteins share structural and sequence similarities, underscoring their importance across all life forms. However, beyond its role in metabolism, HCS participates in the regulation of biotin utilization and acts as a nuclear transcriptional coregulator of gene expression. In this review, we discuss the function of HCS and biotin in metabolism and human disease, a putative role for the enzyme in histone biotinylation, and its participation as a nuclear factor in chromatin dynamics. We suggest that HCS be classified as a moonlighting protein, with two biotin-dependent cytosolic metabolic roles and a distinct biotin-independent nuclear coregulatory function.


Assuntos
Biotina/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Biotinilação , Cromatina/metabolismo , Citosol/metabolismo , Regulação da Expressão Gênica , Histonas/metabolismo , Humanos
5.
Nucleic Acids Res ; 40(4): 1460-74, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22021382

RESUMO

The ATRX gene encodes a chromatin remodeling protein that has two important domains, a helicase/ATPase domain and a domain composed of two zinc fingers called the ADD domain. The ADD domain binds to histone tails and has been proposed to mediate their binding to chromatin. The putative ATRX homolog in Drosophila (XNP/dATRX) has a conserved helicase/ATPase domain but lacks the ADD domain. In this study, we propose that XNP/dATRX interacts with other proteins with chromatin-binding domains to recognize specific regions of chromatin to regulate gene expression. We report a novel functional interaction between XNP/dATRX and the cell proliferation factor DREF in the expression of pannier (pnr). DREF binds to DNA-replication elements (DRE) at the pnr promoter to modulate pnr expression. XNP/dATRX interacts with DREF, and the contact between the two factors occurs at the DRE sites, resulting in transcriptional repression of pnr. The occupancy of XNP/dATRX at the DRE, depends on DNA binding of DREF at this site. Interestingly, XNP/dATRX regulates some, but not all of the genes modulated by DREF, suggesting a promoter-specific role of XNP/dATRX in gene regulation. This work establishes that XNP/dATRX directly contacts the transcriptional activator DREF in the chromatin to regulate gene expression.


Assuntos
Cromatina/genética , DNA Helicases/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Cromatina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genética , Mutação , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Transcrição Gênica
6.
J Biol Chem ; 287(40): 33567-80, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-22865882

RESUMO

The multisubunit DNA repair and transcription factor TFIIH maintains an intricate cross-talk with different factors to achieve its functions. The p8 subunit of TFIIH maintains the basal levels of the complex by interacting with the p52 subunit. Here, we report that in Drosophila, the homolog of the p8 subunit (Dmp8) is encoded in a bicistronic transcript with the homolog of the Swc6/p18(Hamlet) subunit (Dmp18) of the SWR1/SRCAP chromatin remodeling complex. The SWR1 and SRCAP complexes catalyze the exchange of the canonical histone H2A with the H2AZ histone variant. In eukaryotic cells, bicistronic transcripts are not common, and in some cases, the two encoded proteins are functionally related. We found that Dmp18 physically interacts with the Dmp52 subunit of TFIIH and co-localizes with TFIIH in the chromatin. We also demonstrated that Dmp18 genetically interacts with Dmp8, suggesting that a cross-talk might exist between TFIIH and a component of a chromatin remodeler complex involved in histone exchange. Interestingly, our results also show that when the level of one of the two proteins is decreased and the other maintained, a specific defect in the fly is observed, suggesting that the organization of these two genes in a bicistronic locus has been selected during evolution to allow co-regulation of both genes.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Fator de Transcrição TFIIH/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Cromatina/química , Cromatina/metabolismo , Cromossomos/ultraestrutura , Cruzamentos Genéticos , Reparo do DNA , Drosophila melanogaster , Histonas/química , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Interferência de RNA , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
7.
Genesis ; 50(8): 599-611, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22307950

RESUMO

The Drosophila Jun N-terminal kinase (JNK) gene basket (bsk) promoter contains a DNA replication-related element (DRE)-like sequence, raising the possibility of regulation by the DNA replication-related element-binding factor (DREF). Chromatin immunoprecipitation assays with anti-DREF IgG showed the bsk gene promoter region to be effectively amplified. Luciferase transient expression assays revealed the DRE-like sequence to be important for bsk gene promoter activity, and knockdown of DREF decreased the bsk mRNA level and the bsk gene promoter activity. Furthermore, knockdown of DREF in the notum compartment of wing discs by pannier-GAL4 and UAS-DREFIR resulted in a split thorax phenotype. Monitoring of JNK activity in the wing disc by LacZ expression in a puckered (puc)-LacZ enhancer trap line revealed the reduction in DREF knockdown clones. These findings indicate that DREF is involved in regulation of Drosophila thorax development via actions on the JNK pathway.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Sistema de Sinalização das MAP Quinases , Fatores de Transcrição/metabolismo , Região 5'-Flanqueadora , Animais , Sequência de Bases , Linhagem Celular , Sequência Consenso , Drosophila/genética , Proteínas de Drosophila/genética , Ativação Enzimática/genética , Epistasia Genética , Olho/crescimento & desenvolvimento , Olho/metabolismo , Olho/ultraestrutura , Técnicas de Silenciamento de Genes , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas , Tórax/crescimento & desenvolvimento , Tórax/metabolismo , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento , Asas de Animais/metabolismo
8.
J Biol Chem ; 285(41): 31370-9, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-20675387

RESUMO

Chromatin undergoes a variety of changes in response to UV-induced DNA damage, including histone acetylation. In human and Drosophila cells, this response is affected by mutations in the tumor suppressor p53. In this work, we report that there is a global decrease in trimethylated Lys-9 in histone H3 (H3K9me3) in salivary gland cells in wild type flies in response to UV irradiation. In contrast, flies with mutations in the Dmp53 gene have reduced basal levels of H3K9me3, which are then increased after UV irradiation. The reduction of H3K9me3 in response to DNA damage occurs preferentially in heterochromatin. Our experiments demonstrate that UV irradiation enhances the levels of Lys-9 demethylase (dKDM4B) transcript and protein in wild type flies, but not in Dmp53 mutant flies. Dmp53 binds to a DNA element in the dKdm4B gene as a response to UV irradiation. Furthermore, heterozygous mutants for the dKdm4B gene are more sensitive to UV irradiation; they are deficient in the removal of cyclobutane-pyrimidine dimers, and the decrease of H3K9me3 levels following DNA damage is not observed in dKdm4B mutant flies. We propose that in response to UV irradiation, Dmp53 enhances the expression of the dKDM4B histone demethylase, which demethylates H3K9me3 preferentially in heterochromatin regions. This mechanism appears to be essential for the proper function of the nucleotide excision repair system.


Assuntos
Dano ao DNA/efeitos da radiação , Proteínas de Drosophila/metabolismo , Heterocromatina/metabolismo , Histona Desmetilases/metabolismo , Histonas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Dano ao DNA/genética , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Proteínas de Drosophila/genética , Drosophila melanogaster , Heterocromatina/genética , Histona Desmetilases/genética , Histonas/genética , Humanos , Lisina/genética , Lisina/metabolismo , Mutação , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Proteína Supressora de Tumor p53/genética
9.
Mol Genet Metab ; 103(3): 240-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21463962

RESUMO

This work examines the cellular localization of holocarboxylase synthetase (HCS) and its association to chromatin during different stages of development of Drosophila melanogaster. While HCS is well known for its role in the attachment of biotin to biotin-dependent carboxylase, it also regulates the transcription of HCS and carboxylases genes by triggering a cGMP-dependent signal transduction cascade. Further, its presence in the nucleus of cells suggests additional regulatory roles, but the mechanism involved has remained elusive. In this study, we show in D. melanogaster that HCS migrates to the nucleus at the gastrulation stage. In polytene chromosomes, it is associated to heterochromatin bands where it co-localizes with histone 3 trimethylated at lysine 9 (H3K9met3) but not with the euchromatin mark histone 3 acetylated at lysine 9 (H3K9ac). Further, we demonstrate the association of HCS with the hsp70 promoter by immunofluorescence and chromatin immuno-precipitation (ChIP) of associated DNA sequences. We demonstrate the occupancy of HCS to the core promoter region of the transcriptionally inactive hsp70 gene. On heat-shock activation of the hsp70 promoter, HCS is displaced and the promoter region becomes enriched with the TFIIH subunits XPD and XPB and elongating RNA pol II, the latter also demonstrated using ChIP assays. We suggest that HCS may have a role in the repression of gene expression through a mechanism involving its trafficking to the nucleus and interaction with heterochromatic sites coincident with H3K9met3.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Cromatina/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Sequência de Aminoácidos , Animais , Anticorpos/metabolismo , Carbono-Nitrogênio Ligases/genética , Núcleo Celular/enzimologia , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP72/genética , Células Hep G2 , Histonas/metabolismo , Temperatura Alta , Humanos , Dados de Sequência Molecular , Cromossomos Politênicos/genética , Cromossomos Politênicos/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Alinhamento de Sequência
10.
J Vis Exp ; (174)2021 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-34487109

RESUMO

Visualization of heterochromatin aggregates by immunostaining can be challenging. Many mammalian components of chromatin are conserved in Drosophila melanogaster. Therefore, it is an excellent model to study heterochromatin formation and maintenance. Polytenized cells, such as the ones found in salivary glands of third instar D. melanogaster larvae, provide an excellent tool to observe the chromatin amplified nearly a thousand times and have allowed researchers to study changes in the distribution of heterochromatin in the nucleus. Although the observation of heterochromatin components can be carried out directly in polytene chromosome preparations, the localization of some proteins can be altered by the severity of the treatment. Therefore, the direct visualization of heterochromatin in cells complements this type of study. In this protocol, we describe the immunostaining techniques used for this tissue, the use of secondary fluorescent antibodies, and confocal microscopy to observe these heterochromatin aggregates with greater precision and detail.


Assuntos
Proteínas de Drosophila , Heterocromatina , Animais , Cromossomos , Drosophila , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Glândulas Salivares , Coloração e Rotulagem
11.
Front Genet ; 11: 600615, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329746

RESUMO

Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.

12.
BMC Mol Cell Biol ; 21(1): 17, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293240

RESUMO

BACKGROUND: dADD1 and dXNP proteins are the orthologs in Drosophila melanogaster of the ADD and SNF2 domains, respectively, of the ATRX vertebrate's chromatin remodeler, they suppress position effect variegation phenotypes and participate in heterochromatin maintenance. RESULTS: We performed a search in human cancer databases and found that ATRX protein levels were elevated in more than 4.4% of the samples analyzed. Using the Drosophila model, we addressed the effects of over and under-expression of dADD1 proteins in polytene cells. Elevated levels of dADD1 in fly tissues caused different phenotypes, such as chromocenter disruption and loss of banding pattern at the chromosome arms. Analyses of the heterochromatin maintenance protein HP1a, the dXNP ATPase and the histone post-translational modification H3K9me3 revealed changes in their chromatin localization accompanied by mild transcriptional defects of genes embedded in heterochromatic regions. Furthermore, the expression of heterochromatin embedded genes in null dadd1 organisms is lower than in the wild-type conditions. CONCLUSION: These data indicate that dADD1 overexpression induces chromatin changes, probably affecting the stoichiometry of HP1a containing complexes that lead to transcriptional and architectural changes. Our results place dADD1 proteins as important players in the maintenance of chromatin architecture and heterochromatic gene expression.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Efeitos da Posição Cromossômica , Proteínas de Drosophila/genética , Drosophila melanogaster , Expressão Gênica , Heterocromatina/metabolismo , Fatores de Transcrição , Proteína Nuclear Ligada ao X/metabolismo
13.
Cells ; 9(8)2020 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-32784937

RESUMO

Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Eucromatina/metabolismo , Heterocromatina/metabolismo , Animais , Homólogo 5 da Proteína Cromobox , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Instabilidade Genômica , Humanos , Elementos Isolantes , Filogenia , Ligação Proteica , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas
14.
Mol Cell Biol ; 26(5): 1589-97, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16478981

RESUMO

The tissue-specific chicken alpha-globin gene domain represents one of the paradigms, in terms of its constitutively open chromatin conformation and the location of several regulatory elements within the neighboring housekeeping gene. Here, we show that an 0.2-kb DNA fragment located approximately 4 kb upstream to the chicken alpha-globin gene cluster contains a binding site for the multifunctional protein factor CTCF and possesses silencer activity which depends on CTCF binding, as demonstrated by site-directed mutagenesis of the CTCF recognition sequence. CTCF was found to be associated with this recognition site in erythroid cells but not in lymphoid cells where the site is methylated. A functional promoter directing the transcription of the apparently housekeeping ggPRX gene was found 120 bp from the CTCF-dependent silencer. The data are discussed in terms of the hypothesis that the CTCF-dependent silencer stabilizes the level of ggPRX gene transcription in erythroid cells where the promoter of this gene may be influenced by positive cis-regulatory signals activating alpha-globin gene transcription.


Assuntos
Galinhas/genética , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Globinas/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Células Cultivadas , Ilhas de CpG , Proteínas de Ligação a DNA/genética , Eritrócitos/fisiologia , Regulação da Expressão Gênica , Genes Reguladores/genética , Globinas/metabolismo , Linfócitos/fisiologia , Dados de Sequência Molecular , Família Multigênica , Especificidade de Órgãos , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética
15.
Cell Rep ; 28(10): 2715-2727.e5, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484080

RESUMO

Evidence suggests that Polycomb (Pc) is present at chromatin loop anchors in Drosophila. Pc is recruited to DNA through interactions with the GAGA binding factors GAF and Pipsqueak (Psq). Using HiChIP in Drosophila cells, we find that the psq gene, which has diverse roles in development and tumorigenesis, encodes distinct isoforms with unanticipated roles in genome 3D architecture. The BR-C, ttk, and bab domain (BTB)-containing Psq isoform (PsqL) colocalizes genome-wide with known architectural proteins. Conversely, Psq lacking the BTB domain (PsqS) is consistently found at Pc loop anchors and at active enhancers, including those that respond to the hormone ecdysone. After stimulation by this hormone, chromatin 3D organization is altered to connect promoters and ecdysone-responsive enhancers bound by PsqS. Our findings link Psq variants lacking the BTB domain to Pc-bound active enhancers, thus shedding light into their molecular function in chromatin changes underlying the response to hormone stimulus.


Assuntos
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Ecdisona/farmacologia , Elementos Facilitadores Genéticos/genética , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteínas de Drosophila/química , Drosophila melanogaster/efeitos dos fármacos , Proteínas Nucleares/química , Complexo Repressor Polycomb 1/química , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Isoformas de Proteínas/metabolismo
16.
FEBS Lett ; 580(2): 642-8, 2006 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-16412438

RESUMO

It has been demonstrated that the human tumor suppressor p53 has an important role in modulating histone modifications after UV light irradiation. In this work we explored if the p53 Drosophila homologue has a similar role. Taking advantage of the existence of polytene chromosomes in the salivary glands of third instar larvae, we analyzed K9 and K14 H3 acetylation patterns in situ after UV irradiation of wild-type and Dmp53 null flies. As in human cells, after UV damage there is an increase in H3 acetylation in wild-type organisms. In Dmp53 mutant flies, this response is significantly affected at the K9 position. These results are similar to those found in human p53 mutant tumor cells with one interesting difference, only the basal H3 acetylation of K14 is reduced in Dmp53 mutant flies, while the basal H3-K9 acetylation is not affected. This work shows, that the presence of Dmp53 is necessary to maintain normal H3-K14 acetylation levels in Drosophila chromatin and that the function of p53 to maintaining histone modifications, is conserved in Drosophila and humans.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Larva/efeitos da radiação , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Cromossomos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/efeitos da radiação , Humanos , Larva/metabolismo , Proteína Supressora de Tumor p53/genética , Raios Ultravioleta
17.
J Mol Biol ; 349(5): 961-75, 2005 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-15913647

RESUMO

Studying the chicken alpha-globin domain as a model system of gene regulation, we have previously identified contiguous silencer-enhancer elements located on the 3'-side of the domain. To better characterize the enhancer we performed a systematic functional analysis to define its expression influence range and the ubiquitous and stage-specific transcriptional regulators interacting with this control element. In contrast to previous reports, we found that, in addition to a core element that includes three GATA-1 binding sites, the enhancer incorporates a 120 base-pair DNA fragment where EKLF, NF-E2 and a fourth GATA-1 factor could interact. Functional experiments demonstrate that the enhancer activity over the adult alpha(D) promoter is differentially regulated. We found that the transcriptional factor Ying Yang 1 (YY1) binds to the 120 base-pair DNA fragment and its effect over the enhancer activity is GATA-1-dependent. In addition, we characterize a novel physical interaction between GATA-1 and YY1 that influences the enhancer function. Experiments using a histone deacetylation inhibitor indicate that, in pre-erythroblasts, the enhancer down-regulation could be influenced by a closed chromatin conformation. Our observations show that the originally defined enhancer possesses a more complex composition than previously assumed. We propose that its activity is modulated through differential nuclear factor interactions and chromatin modifications at distinct erythroid stages.


Assuntos
Proteínas de Ligação a DNA/genética , Globinas/genética , Fatores de Transcrição/genética , Região 3'-Flanqueadora , Animais , Linhagem Celular , Embrião de Galinha , Galinhas , Elementos Facilitadores Genéticos , Eritroblastos/metabolismo , Eritrócitos/metabolismo , Fatores de Ligação de DNA Eritroide Específicos , Inibidores de Histona Desacetilases , Ácidos Hidroxâmicos/farmacologia , Fatores de Transcrição Kruppel-Like , Fator de Transcrição NF-E2 , Regiões Promotoras Genéticas , Fator de Transcrição YY1
18.
Nucleic Acids Res ; 32(4): 1354-62, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14981153

RESUMO

The eukaryotic genome is partitioned into chromatin domains containing coding and intergenic regions. Insulators have been suggested to play a role in establishing and maintaining chromatin domains. Here we describe the identification and characterization of two separable enhancer blocking elements located in the 5' flanking region of the chicken alpha-globin domain, 11-16 kb upstream of the embryonic alpha-type pi gene in a DNA fragment harboring a MAR (matrix attachment region) element and three DNase I hypersensitive sites (HSs). The most upstream enhancer blocking element co-localizes with the MAR element and an erythroid-specific HS. The second enhancer blocking element roughly co-localizes with a constitutive HS. The third erythroid-specific HS present within the DNA fragment studied harbors a silencing, but not an enhancer blocking, activity. The 11 zinc-finger CCCTC-binding factor (CTCF), which plays an essential role in enhancer blocking activity in many previously characterized vertebrate insulators, is found to bind the two alpha-globin enhancer blocking elements. Detailed analysis has demonstrated that mutation of the CTCF binding site within the most upstream enhancer blocking element abolishes the enhancer blocking activity. The results are discussed with respect to special features of the tissue-specific alpha-globin gene domain located in a permanently open chromatin area.


Assuntos
Região 5'-Flanqueadora , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Globinas/genética , Elementos Isolantes , Proteínas Repressoras/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Linhagem Celular , Galinhas/genética , Desoxirribonuclease I/metabolismo , Humanos , Dados de Sequência Molecular
19.
Open Biol ; 6(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27805905

RESUMO

Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Mutação , Espermatozoides/citologia , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/genética , Animais , Diferenciação Celular , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Perfilação da Expressão Gênica , Masculino , Estabilidade Proteica , Testículo/citologia , Testículo/embriologia , Transcrição Gênica
20.
Mol Genet Metab Rep ; 7: 20-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27114912

RESUMO

Tristetraprolin (TTP) is a 34-kDa, zinc finger-containing factor that in mammalian cells acts as a tumor suppressor protein through two different mechanisms. In the cytoplasm TTP promotes the decay of hundreds of mRNAs encoding cell factors involved in inflammation, tissue invasion, and metastasis. In the cell nucleus TTP has been identified as a transcriptional corepressor of the estrogen receptor alpha (ERα), which has been associated to the development and progression of the majority of breast cancer tumors. In this work we report that nuclear TTP modulates the transactivation activity of progesterone receptor (PR), glucocorticoid receptor (GR) and androgen receptor (AR). In recent years these steroid nuclear receptors have been shown to be of clinical and therapeutical relevance in breast cancer. The functional association between TTP and steroid nuclear receptors is supported by the finding that TTP physically interacts with ERα, PR, GR and AR in vivo. We also show that TTP overexpression attenuates the transactivation of all the steroid nuclear receptors tested. In contrast, siRNA-mediated reduction of endogenous TTP expression in MCF-7 cells produced an increase in the transcriptional activities of ERα, PR, GR and AR. Taken together, these results suggest that the function of nuclear TTP in breast cancer cells is to act as a corepressor of ERα, PR, GR and AR. We propose that the reduction of TTP expression observed in different types of breast cancer tumors may contribute to the development of this disease by producing a dysregulation of the transactivation activity of multiple steroid nuclear receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA