RESUMO
The intestinal microbiota is an important modulator of graft-versus-host disease (GVHD), which often complicates allogeneic hematopoietic stem cell transplantation (allo-HSCT). Broad-spectrum antibiotics such as carbapenems increase the risk for intestinal GVHD, but mechanisms are not well understood. In this study, we found that treatment with meropenem, a commonly used carbapenem, aggravates colonic GVHD in mice via the expansion of Bacteroides thetaiotaomicron (BT). BT has a broad ability to degrade dietary polysaccharides and host mucin glycans. BT in meropenem-treated allogeneic mice demonstrated upregulated expression of enzymes involved in the degradation of mucin glycans. These mice also had thinning of the colonic mucus layer and decreased levels of xylose in colonic luminal contents. Interestingly, oral xylose supplementation significantly prevented thinning of the colonic mucus layer in meropenem-treated mice. Specific nutritional supplementation strategies, including xylose supplementation, may combat antibiotic-mediated microbiome injury to reduce the risk for intestinal GVHD in allo-HSCT patients.
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteroides , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Doença Enxerto-Hospedeiro/etiologia , Meropeném , Camundongos , Mucinas/metabolismo , Muco/metabolismo , Polissacarídeos/metabolismo , XiloseRESUMO
Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.
Assuntos
Lipídeos/fisiologia , Animais , Apresentação de Antígeno , Autofagia , Infecções Bacterianas/imunologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/patologia , Hepacivirus/fisiologia , Hepatite C/imunologia , Hepatite C/patologia , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Organelas/microbiologia , Organelas/fisiologia , Organelas/ultraestrutura , Montagem de VírusRESUMO
Among the first microorganisms to colonize the human gut of breastfed infants are bacteria capable of fermenting human milk oligosaccharides (HMOs). One of the most abundant HMOs, 2'-fucosyllactose (2'-FL), may specifically drive bacterial colonization of the intestine. Recently, differential growth has been observed across multiple species of Akkermansia on various HMOs including 2'-FL. In culture, we found growth of two species, A. muciniphila MucT and A. biwaensis CSUN-19,on HMOs corresponded to a decrease in the levels of 2'-FL and an increase in lactose, indicating that the first step in 2'-FL catabolism is the cleavage of fucose. Using phylogenetic analysis and transcriptional profiling, we found that the number and expression of fucosidase genes from two glycoside hydrolase (GH) families, GH29 and GH95, vary between these two species. During the mid-log phase of growth, the expression of several GH29 genes was increased by 2'-FL in both species, whereas the GH95 genes were induced only in A. muciniphila. We further show that one putative fucosidase and a ß-galactosidase from A. biwaensis are involved in the breakdown of 2'-FL. Our findings indicate that the plasticity of GHs of human-associated Akkermansia sp. enables access to additional growth substrates present in HMOs, including 2'-FL. Our work highlights the potential for Akkermansia to influence the development of the gut microbiota early in life and expands the known metabolic capabilities of this important human symbiont.IMPORTANCEAkkermansia are mucin-degrading specialists widely distributed in the human population. Akkermansia biwaensis has recently been observed to have enhanced growth relative to other human-associated Akkermansia on multiple human milk oligosaccharides (HMOs). However, the mechanisms for enhanced growth are not understood. Here, we characterized the phylogenetic diversity and function of select genes involved in the growth of A. biwaensis on 2'-fucosyllactose (2'-FL), a dominant HMO. Specifically, we demonstrate that two genes in a genomic locus, a putative ß-galactosidase and α-fucosidase, are likely responsible for the enhanced growth on 2'-FL. The functional characterization of A. biwaensis growth on 2'-FL delineates the significance of a single genomic locus that may facilitate enhanced colonization and functional activity of select Akkermansia early in life.
Assuntos
Akkermansia , Trissacarídeos , alfa-L-Fucosidase , Lactente , Humanos , Akkermansia/metabolismo , alfa-L-Fucosidase/genética , alfa-L-Fucosidase/metabolismo , Filogenia , Oligossacarídeos/metabolismo , beta-Galactosidase/genéticaRESUMO
Our understanding of how the obligate intracellular bacterial pathogen Chlamydia trachomatis reprograms the function of infected cells in the upper genital tract is largely based on observations made in cell culture with transformed epithelial cell lines. Here, we describe a primary organoid system derived from endometrial tissue to recapitulate epithelial cell diversity, polarity and ensuing responses to Chlamydia infection. Using high-resolution and time-lapse microscopy, we catalog the infection process in organoids from invasion to egress, including the reorganization of the cytoskeleton and positioning of intracellular organelles. We show this model is amenable to screening C. trachomatis mutants for defects in the fusion of pathogenic vacuoles, the recruitment of intracellular organelles and inhibition of cell death. Moreover, we reconstructed a primary immune cell response by co-culturing infected organoids with neutrophils, and determined that effectors like CPAF (also known as CT858) and TepP (also known as CT875) limit the recruitment of neutrophils to infected organoids. Collectively, our model can be applied to study the cell biology of Chlamydia infections in three-dimensional structures that better reflect the diversity of cell types and polarity encountered by Chlamydia in their animal hosts.
Assuntos
Infecções por Chlamydia , Organoides , Animais , Chlamydia trachomatis , Endométrio , Células Epiteliais , FemininoRESUMO
Chlamydia pneumoniae is a Gram-negative, obligate intracellular pathogen that causes community-acquired respiratory infections. C. pneumoniae uses a cell contact-dependent type-III secretion (T3S) system to translocate pathogen effector proteins that manipulate host cellular functions. While several C. pneumoniae T3S effectors have been proposed, few have been experimentally confirmed in Chlamydia In this study, we expressed 382 C. pneumoniae genes in C. trachomatis as fusion proteins to an epitope tag derived from glycogen synthase kinase 3ß (GSK3ß) which is the target of phosphorylation by mammalian kinases. Based on the detection of the tagged C. pneumoniae protein with anti-phospho GSK3ß antibodies, we identified 49 novel C. pneumoniae-specific proteins that are translocated by C. trachomatis into the host cytoplasm and thus likely play a role as modifiers of host cellular functions. In this manner, we identified and characterized a new C. pneumoniae effector CPj0678 that recruits the host cell protein PACSIN2 to the plasma membrane. These findings indicate that C. trachomatis provides a powerful screening system to detect candidate effector proteins encoded by other pathogenic and endosymbiotic Chlamydia species.Importance Chlamydia injects numerous effector proteins into host cells to manipulate cellular functions important for bacterial survival. Based on findings in C. trachomatis, it has been proposed that between 5-10% of the C. pneumoniae genome, a related respiratory pathogen, encodes secreted effectors. However only a few C. pneumoniae effectors have been identified and experimentally validated. With the development of methods for the stable genetic transformation of C. trachomatis, it is now possible to use C. trachomatis shuttle plasmids to express and explore the function of proteins from other Chlamydia in a more relevant bacterial system. In this study, we experimentally determined that 49 C. pneumoniae-specific proteins are translocated into the host cytoplasm by Chlamydia secretion systems, and identify a novel effector required to recruit the host factor PACSIN2 to the plasma membrane during infection.
RESUMO
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Assuntos
Proteínas de Bactérias/genética , Infecções por Chlamydia/microbiologia , Chlamydia/genética , Proteínas de Bactérias/metabolismo , Chlamydia/classificação , Chlamydia/isolamento & purificação , Chlamydia/metabolismo , Genoma Bacteriano , HumanosRESUMO
CPAF (chlamydial protease-like activity factor) is a Chlamydia trachomatis protease that is translocated into the host cytosol during infection. CPAF activity results in dampened host inflammation signaling, cytoskeletal remodeling, and suppressed neutrophil activation. Although CPAF is an emerging antivirulence target, its catalytic mechanism has been unexplored to date. Steady state kinetic parameters were obtained for recombinant CPAF with vimentin-derived peptide substrates using a high-performance liquid chromatography-based discontinuous assay (kcat = 45 ± 0.6 s-1; kcat/Km = 0.37 ± 0.02 µM-1 s-1) or a new fluorescence-based continuous assay (kcat = 23 ± 0.7 s-1; kcat/Km = 0.29 ± 0.03 µM-1 s-1). Residues H105, S499, E558, and newly identified D103 were found to be indispensable for autoproteolytic processing by mutagenesis, while participation of C500 was ruled out despite its proximity to the S499 nucleophile. Pre-steady state kinetics indicated a burst kinetic profile, with fast acylation (kacyl = 110 ± 2 s-1) followed by slower, partially rate-limiting deacylation (kdeacyl = 57 ± 1 s-1). Both kcat- and kcat/Km-pH profiles showed single acidic limb ionizations with pKa values of 6.2 ± 0.1 and 6.5 ± 0.1, respectively. A forward solvent deuterium kinetic isotope effect of 2.6 ± 0.1 was observed for D2Okcatapp, but a unity effect was found for D2Okcat/Kmapp. The kcat proton inventory was linear, indicating transfer of a single proton in the rate-determining transition state, most likely from H105. Collectively, these data provide support for the classification of CPAF as a serine protease and provide a mechanistic foundation for the future design of inhibitors.
Assuntos
Chlamydia trachomatis/enzimologia , Endopeptidases/metabolismo , Serina Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cinética , Proteólise , Fatores de VirulênciaRESUMO
A major roadblock to understanding how microbes in the gastrointestinal tract colonize and influence the physiology of their hosts is our inability to genetically manipulate new bacterial species and experimentally assess the function of their genes. We describe the application of population-based genomic sequencing after chemical mutagenesis to map bacterial genes responsible for motility in Exiguobacterium acetylicum, a representative intestinal Firmicutes bacterium that is intractable to molecular genetic manipulation. We derived strong associations between mutations in 57 E. acetylicum genes and impaired motility. Surprisingly, less than half of these genes were annotated as motility-related based on sequence homologies. We confirmed the genetic link between individual mutations and loss of motility for several of these genes by performing a large-scale analysis of spontaneous suppressor mutations. In the process, we reannotated genes belonging to a broad family of diguanylate cyclases and phosphodiesterases to highlight their specific role in motility and assigned functions to uncharacterized genes. Furthermore, we generated isogenic strains that allowed us to establish that Exiguobacterium motility is important for the colonization of its vertebrate host. These results indicate that genetic dissection of a complex trait, functional annotation of new genes, and the generation of mutant strains to define the role of genes in complex environments can be accomplished in bacteria without the development of species-specific molecular genetic tools.
Assuntos
Firmicutes/genética , Técnicas Genéticas , Animais , Trato Gastrointestinal/microbiologia , Genes Bacterianos , Proteínas Motores Moleculares/genética , Mutagênese , Peixe-ZebraRESUMO
Chlamydia has emerged as an important model system for the study of host pathogen interactions, in part due to a resurgence in the development of tools for its molecular genetic manipulation. An additional tool, published by Keb et al. (G. Keb, R. Hayman, and K. A. Fields, J. Bacteriol. 200:e00479-18, 2018, https://doi.org/10.1128/JB.00479-18), now allows for custom genetic engineering of genomic regions that were traditionally recalcitrant to genetic manipulation, such as genes within operons. This new method will be an essential instrument for the elucidation of Chlamydia-host interactions.
Assuntos
Infecções por Chlamydia , Chlamydia trachomatis , Alelos , Deleção de Genes , Interações Hospedeiro-Patógeno , HumanosRESUMO
Although animal research requires adherence to various regulations and standards, the manner in which compliance is maintained and the degree of additional constraints varies between institutions. Regulatory burden, particularly if institutionally imposed, has become a concern for institutions as increased regulatory expectations result in decreased resources available for research efforts. Faculty, research staff, and support staff engaged in animal research were surveyed to determine what institutional animal care and use committee (IACUC) processes were considered burdensome, the perceived value of some suggested modifications, and satisfaction with the IACUC administrative office and the animal resource unit. Although the results revealed overwhelming satisfaction with the IACUC administrative office and the animal resource unit, several IACUC processes were deemed burdensome, and therefore there would be value in modifying IACUC processes. When comparing the value of modifying IACUC processes, different groups within the animal care and use program (ACUP) tended to have different responses on many of the topics. This survey identified several perceived burdensome IACUC processes that would likely benefit individuals if modified. In today's environment of shrinking budgets for biomedical research, minimizing regulatory burden-particularly unnecessary, self-imposed burden-in the ACUP is particularly important to ensure that costs, time, and effort are appropriate to achieve animal welfare and quality of research endeavors.-Norton, J. N., Reynolds, R. P., Chan, C., Valdivia, R. H., Staats, H. F. Assessing the satisfaction and burden within an academic animal care and use program.
Assuntos
Comitês de Cuidado Animal/organização & administração , Criação de Animais Domésticos/normas , Bem-Estar do Animal/normas , Animais de Laboratório , Experimentação Animal/normas , Animais , Guias como Assunto , UniversidadesRESUMO
The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.
Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Ácido Graxo Sintase Tipo II/metabolismo , Inibidores da Síntese de Ácidos Graxos/farmacologia , Ácidos Graxos/biossíntese , Sulfametoxazol/farmacologia , Acilação/efeitos dos fármacos , Adamantano/farmacologia , Aminobenzoatos/farmacologia , Anilidas/farmacologia , Animais , Linhagem Celular Tumoral , Cerulenina/farmacologia , Infecções por Chlamydia/tratamento farmacológico , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Chlorocebus aethiops , Ácido Graxo Sintase Tipo II/genética , Células HeLa , Humanos , Triclosan/farmacologia , Células VeroRESUMO
Despite the extensive in vitro characterization of CPAF (chlamydial protease/proteasome-like activity factor), its role in chlamydial infection and pathogenesis remains unclear. We now report that a Chlamydia trachomatis strain deficient in expression of CPAF (L2-17) is no longer able to establish a successful infection in the mouse lower genital tract following an intravaginal inoculation. The L2-17 organisms were cleared from the mouse lower genital tract within a few days, while a CPAF-sufficient C. trachomatis strain (L2-5) survived in the lower genital tract for more than 3 weeks. However, both the L2-17 and L2-5 organisms maintained robust infection courses that lasted up to 4 weeks when they were directly delivered into the mouse upper genital tract. The CPAF-dependent chlamydial survival in the lower genital tract was confirmed in multiple strains of mice. Thus, we have demonstrated a critical role of CPAF in promoting C. trachomatis survival in the mouse lower genital tracts. It will be interesting to further investigate the mechanisms of the CPAF-dependent chlamydial pathogenicity.
Assuntos
Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/metabolismo , Endopeptidases/metabolismo , Genitália/microbiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BLRESUMO
Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.
Assuntos
Chlamydia trachomatis/genética , Imunidade Inata/genética , Chaperonas Moleculares/genética , Proteínas Proto-Oncogênicas c-crk/metabolismo , Sequência de Aminoácidos , Chlamydia trachomatis/imunologia , Chlamydia trachomatis/metabolismo , Cromatografia Líquida , Imunofluorescência , Células HeLa , Humanos , Imunidade Inata/imunologia , Imunoprecipitação , Chaperonas Moleculares/imunologia , Chaperonas Moleculares/metabolismo , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Espectrometria de Massas em TandemRESUMO
The intracellular bacterial pathogen Coxiella burnetii directs biogenesis of a parasitophorous vacuole (PV) that acquires host endolysosomal components. Formation of a PV that supports C. burnetii replication requires a Dot/Icm type 4B secretion system (T4BSS) that delivers bacterial effector proteins into the host cell cytosol. Thus, a subset of T4BSS effectors are presumed to direct PV biogenesis. Recently, the PV-localized effector protein CvpA was found to promote C. burnetii intracellular growth and PV expansion. We predict additional C. burnetii effectors localize to the PV membrane and regulate eukaryotic vesicle trafficking events that promote pathogen growth. To identify these vacuolar effector proteins, a list of predicted C. burnetii T4BSS substrates was compiled using bioinformatic criteria, such as the presence of eukaryote-like coiled-coil domains. Adenylate cyclase translocation assays revealed 13 proteins were secreted in a Dot/Icm-dependent fashion by C. burnetii during infection of human THP-1 macrophages. Four of the Dot/Icm substrates, termed Coxiella vacuolar protein B (CvpB), CvpC, CvpD, and CvpE, labeled the PV membrane and LAMP1-positive vesicles when ectopically expressed as fluorescently tagged fusion proteins. C. burnetii ΔcvpB, ΔcvpC, ΔcvpD, and ΔcvpE mutants exhibited significant defects in intracellular replication and PV formation. Genetic complementation of the ΔcvpD and ΔcvpE mutants rescued intracellular growth and PV generation, whereas the growth of C. burnetii ΔcvpB and ΔcvpC was rescued upon cohabitation with wild-type bacteria in a common PV. Collectively, these data indicate C. burnetii encodes multiple effector proteins that target the PV membrane and benefit pathogen replication in human macrophages.
Assuntos
Proteínas de Bactérias/metabolismo , Coxiella burnetii/metabolismo , Macrófagos/microbiologia , Transporte Proteico/genética , Vacúolos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Sistemas de Secreção Bacterianos/fisiologia , Linhagem Celular Tumoral , Membrana Celular , Coxiella burnetii/genética , Citosol/metabolismo , Deleção de Genes , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Febre Q/microbiologia , Febre Q/patologia , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/genética , Vacúolos/microbiologiaRESUMO
Interferon-inducible GTPases of the Immunity Related GTPase (IRG) and Guanylate Binding Protein (GBP) families provide resistance to intracellular pathogenic microbes. IRGs and GBPs stably associate with pathogen-containing vacuoles (PVs) and elicit immune pathways directed at the targeted vacuoles. Targeting of Interferon-inducible GTPases to PVs requires the formation of higher-order protein oligomers, a process negatively regulated by a subclass of IRG proteins called IRGMs. We found that the paralogous IRGM proteins Irgm1 and Irgm3 fail to robustly associate with "non-self" PVs containing either the bacterial pathogen Chlamydia trachomatis or the protozoan pathogen Toxoplasma gondii. Instead, Irgm1 and Irgm3 reside on "self" organelles including lipid droplets (LDs). Whereas IRGM-positive LDs are guarded against the stable association with other IRGs and GBPs, we demonstrate that IRGM-stripped LDs become high affinity binding substrates for IRG and GBP proteins. These data reveal that intracellular immune recognition of organelle-like structures by IRG and GBP proteins is partly dictated by the missing of "self" IRGM proteins from these structures.
Assuntos
Infecções por Chlamydia/imunologia , Chlamydia trachomatis/imunologia , GTP Fosfo-Hidrolases/imunologia , Proteínas de Ligação ao GTP/imunologia , Imunidade Inata , Toxoplasma/imunologia , Toxoplasmose/imunologia , Vacúolos/imunologia , Animais , Linhagem Celular , Infecções por Chlamydia/genética , Infecções por Chlamydia/metabolismo , Chlamydia trachomatis/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Knockout , Toxoplasma/metabolismo , Toxoplasmose/genética , Toxoplasmose/metabolismo , Vacúolos/genética , Vacúolos/metabolismo , Vacúolos/microbiologia , Vacúolos/parasitologiaRESUMO
BACKGROUND: Chlamydia (C.) trachomatis is the most prevalent bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Genetic approaches to investigate C. trachomatis have been only recently developed due to the organism's intracellular developmental cycle. HtrA is a critical stress response serine protease and chaperone for many bacteria and in C. trachomatis has been previously shown to be important for heat stress and the replicative phase of development using a chemical inhibitor of the CtHtrA activity. In this study, chemically-induced SNVs in the cthtrA gene that resulted in amino acid substitutions (A240V, G475E, and P370L) were identified and characterized. METHODS: SNVs were initially biochemically characterized in vitro using recombinant protein techniques to confirm a functional impact on proteolysis. The C. trachomatis strains containing the SNVs with marked reductions in proteolysis were investigated in cell culture to identify phenotypes that could be linked to CtHtrA function. RESULTS: The strain harboring the SNV with the most marked impact on proteolysis (cthtrA P370L) was detected to have a significant reduction in the production of infectious elementary bodies. CONCLUSIONS: This provides genetic evidence that CtHtrA is critical for the C. trachomatis developmental cycle.
Assuntos
Substituição de Aminoácidos , Chlamydia trachomatis/metabolismo , Corpos de Inclusão/microbiologia , Proteínas Mutantes/metabolismo , Serina Proteases/metabolismo , Fatores de Virulência/metabolismo , Linhagem Celular , Chlamydia trachomatis/genética , Análise Mutacional de DNA , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/genética , Proteólise , Serina Proteases/genética , Fatores de Virulência/genéticaRESUMO
Chlamydia trachomatis, a pathogen responsible for diseases of significant clinical and public health importance, remains poorly characterized because of its intractability to routine molecular genetic manipulation. We have developed a combinatorial approach to rapidly generate a comprehensive library of genetically defined mutants. Chemical mutagenesis, coupled with whole-genome sequencing (WGS) and a system for DNA exchange within infected cells, was used to generate Chlamydia mutants with distinct phenotypes, map the underlying genetic lesions, and generate isogenic strains. As a result, we identified mutants with altered glycogen metabolism, including an attenuated strain defective for type II secretion. The coupling of chemically induced gene variation and WGS to establish genotype-phenotype associations should be broadly applicable to the large list of medically and environmentally important microorganisms currently intractable to genetic analysis.
Assuntos
Chlamydia trachomatis/genética , Chlamydia trachomatis/patogenicidade , Biblioteca Gênica , Técnicas Genéticas , Fenótipo , Fatores de Virulência/genética , Animais , Sequência de Bases , Chlorocebus aethiops , Genômica/métodos , Genótipo , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Mutagênese/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA/métodos , Células VeroRESUMO
Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are the main lipid components of bacterial outer membranes and are essential for cell viability in most Gram-negative bacteria. Here we show that small molecule inhibitors of LpxC [UDP-3-O-(R-3-hydroxymyristoyl)-GlcNAc deacetylase], the enzyme that catalyzes the first committed step in the biosynthesis of lipid A, block the synthesis of LOS in the obligate intracellular bacterial pathogen Chlamydia trachomatis. In the absence of LOS, Chlamydia remains viable and establishes a pathogenic vacuole ("inclusion") that supports robust bacterial replication. However, bacteria grown under these conditions were no longer infectious. In the presence of LpxC inhibitors, replicative reticulate bodies accumulated in enlarged inclusions but failed to express selected late-stage proteins and transition to elementary bodies, a Chlamydia developmental form that is required for invasion of mammalian cells. These findings suggest the presence of an outer membrane quality control system that regulates Chlamydia developmental transition to infectious elementary bodies and highlights the potential application of LpxC inhibitors as unique class of antichlamydial agents.
Assuntos
Chlamydia trachomatis/patogenicidade , Corpos de Inclusão/metabolismo , Lipopolissacarídeos/biossíntese , Amidoidrolases/antagonistas & inibidores , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Infecções por Chlamydia , Chlamydia trachomatis/citologia , Chlamydia trachomatis/fisiologia , Células HeLa , Humanos , Lipídeo A/biossíntese , Lipopolissacarídeos/química , Lipopolissacarídeos/metabolismo , Estrutura MolecularRESUMO
Akkermansia sp are common members of the human gut microbiota. Multiple reports have emerged linking the abundance of A. muciniphila to health benefits and disease risk in humans and animals. This review highlights findings linking Akkermansia species in the gastrointestinal (GI) tract to health outcomes across a spectrum of disorders, encompassing those that affect the digestive, respiratory, urinary, and central nervous systems. The mechanism through which Akkermansia exerts a beneficial versus a detrimental effect on health is likely dependent on the genetic makeup of the host metabolic capacity and immunomodulatory properties of the strain, the competition or cooperation with other members of the host microbiota, as well as synergy with co-administered therapies.
Assuntos
Akkermansia , Microbioma Gastrointestinal , Trato Gastrointestinal , Humanos , Akkermansia/fisiologia , Animais , Trato Gastrointestinal/microbiologia , Gastroenteropatias/microbiologiaRESUMO
Aim: Akkermansia are common members of the human gastrointestinal microbiota. The prevalence of these mucophilic bacteria, especially Akkermansia muciniphila (A. muciniphila), correlates with immunological and metabolic health. The genus Akkermansia in humans includes species with significantly larger genomes than A. muciniphila, leading us to postulate that this added genetic content may influence how they impact human metabolic and immunological health. Methods: We conducted a pangenomic analysis of 234 Akkermansia complete or near-complete genomes. We also used high-resolution species and subspecies assignments to reanalyze publicly available metagenomic datasets to determine if there are relationships between Akkermansia species and A. muciniphila clades with various disease outcomes. Results: Analysis of genome-wide average nucleotide identity, 16S rRNA gene identity, conservation of core Akkermansia genes, and analysis of the fatty acid composition of representative isolates support the partitioning of the genus Akkermansia into several species. In addition, A. muciniphila sensu stricto, the most prevalent Akkermansia species in humans, should be subdivided into two subspecies. For a pediatric cohort, we observed species-specific correlations between Akkermansia abundance with baseline obesity or after various interventions. For inflammatory bowel disease cohorts, we identified a decreased abundance of Akkermansia in patients with ulcerative colitis or Crohn's disease, which was species and subspecies-dependent. In patients undergoing immune checkpoint inhibitor therapies for non-small cell lung carcinoma, we observed a significant association between one A. muciniphila subspecies and survival outcomes. Conclusion: Our findings suggest that the prevalence of specific Akkermansia species and/or subspecies can be crucial in evaluating their association with human health, particularly in different disease contexts, and is an important consideration for their use as probiotics.