Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Clin Lab Sci ; : 1-23, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361287

RESUMO

Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.

2.
Crit Rev Immunol ; 42(1): 21-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36374819

RESUMO

The identification of biomarkers allowing diagnostics, prognostics and patient classification is still a challenge in oncological research for patient management. Improvements in patient survival achieved with immunotherapies substantiate that biomarker studies rely not only on cellular pathways contributing to the pathology, but also on the immune competence of the patient. If these immune molecules can be studied in a non-invasive manner, the benefit for patients and clinicians is obvious. The immune receptor Natural Killer Group 2 Member D (NKG2D) represents one of the main systems involved in direct recognition of tumor cells by effector lymphocytes (T and Natural Killer cells), and in immune evasion. The biology of NKG2D and its ligands comprises a complex network of cellular pathways leading to the expression of these tumor-associated ligands on the cell surface or to their release either as soluble proteins, or in extracellular vesicles that potently inhibit NKG2D-mediated responses. Increased levels of NKG2D-ligands in patient serum correlate with tumor progression and poor prognosis; however, most studies did not test the biochemical form of these molecules. Here we review the biology of the NKG2D receptor and ligands, their role in cancer and in patient response to immunotherapies, as well as the changes provoked in this system by non-immune cancer therapies. Further, we discuss the use of NKG2D-L in liquid biopsy, including methods to analyse vesicle-associated proteins. We propose that the evaluation in cancer patients of the whole NKG2D system can provide crucial information about patient immune competence and risk of tumor progression.


Assuntos
Subfamília K de Receptores Semelhantes a Lectina de Células NK , Neoplasias , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas Ligadas por GPI/metabolismo , Ligantes , Neoplasias/diagnóstico , Neoplasias/terapia , Biópsia Líquida
3.
Eur J Immunol ; 51(11): 2633-2640, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34358329

RESUMO

Here, we describe a new, simple, highly multiplexed serological test that generates a more complete picture of seroconversion than single antigen-based assays. Flow cytometry is used to detect multiple Ig isotypes binding to four SARS-CoV-2 antigens: the Spike glycoprotein, its RBD fragment (the main target for neutralizing antibodies), the nucleocapsid protein, and the main cysteine-like protease in a single reaction. Until now, most diagnostic serological tests measured antibodies to only one antigen and in some laboratory-confirmed patients no SARS-CoV-2-specific antibodies could be detected. Our data reveal that while most patients respond against all the viral antigens tested, others show a marked bias to make antibodies against either proteins exposed on the viral particle or those released after cellular infection. With this assay, it was possible to discriminate between patients and healthy controls with 100% confidence. Analysing the response of multiple Ig isotypes to the four antigens in combination may also help to establish a correlation with the severity degree of disease. A more detailed description of the immune responses of different patients to SARS-CoV-2 virus might provide insight into the wide array of clinical presentations of COVID-19.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Citometria de Fluxo/métodos , Antígenos Virais/imunologia , COVID-19/imunologia , Ensaios de Triagem em Larga Escala , Humanos , SARS-CoV-2 , Sensibilidade e Especificidade , Testes Sorológicos
4.
Eur J Immunol ; 51(3): 634-647, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33251605

RESUMO

SARS-CoV-2 infection causes an abrupt response by the host immune system, which is largely responsible for the outcome of COVID-19. We investigated whether the specific immune responses in the peripheral blood of 276 patients were associated with the severity and progression of COVID-19. At admission, dramatic lymphopenia of T, B, and NK cells is associated with severity. Conversely, the proportion of B cells, plasmablasts, circulating follicular helper T cells (cTfh) and CD56- CD16+ NK-cells increased. Regarding humoral immunity, levels of IgM, IgA, and IgG were unaffected, but when degrees of severity were considered, IgG was lower in severe patients. Compared to healthy donors, complement C3 and C4 protein levels were higher in mild and moderate, but not in severe patients, while the activation peptide of C5 (C5a) increased from the admission in every patient, regardless of their severity. Moreover, total IgG, the IgG1 and IgG3 isotypes, and C4 decreased from day 0 to day 10 in patients who were hospitalized for more than two weeks, but not in patients who were discharged earlier. Our study provides important clues to understand the immune response observed in COVID-19 patients, associating severity with an imbalanced humoral response, and identifying new targets for therapeutic intervention.


Assuntos
Linfócitos B/imunologia , COVID-19/patologia , Imunoglobulinas/sangue , Células Matadoras Naturais/imunologia , SARS-CoV-2/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Idoso , COVID-19/imunologia , Complemento C3/análise , Complemento C4/análise , Complemento C5/análise , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Contagem de Linfócitos , Linfopenia/imunologia , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/patologia
5.
Clin Chem ; 68(5): 668-679, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35348673

RESUMO

BACKGROUND: ALK rearrangements are present in 5% of nonsmall cell lung cancer (NSCLC) tumors and identify patients who can benefit from ALK inhibitors. ALK fusions testing using liquid biopsies, although challenging, can expand the therapeutic options for ALK-positive NSCLC patients considerably. RNA inside extracellular vesicles (EVs) is protected from RNases and other environmental factors, constituting a promising source for noninvasive fusion transcript detection. METHODS: EVs from H3122 and H2228 cell lines, harboring EML4-ALK variant 1 (E13; A20) and variant 3 (E6a/b; A20), respectively, were successfully isolated by sequential centrifugation of cell culture supernatants. EVs were also isolated from plasma samples of 16 ALK-positive NSCLC patients collected before treatment initiation. RESULTS: Purified EVs from cell cultures were characterized by transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), and flow cytometry. Western blot and confocal microscopy confirmed the expression of EV-specific markers as well as the expression of EML4-ALK-fusion proteins in EV fractions from H3122 and H2228 cell lines. In addition, RNA from EV fractions derived from cell culture was analyzed by digital PCR (dPCR) and ALK-fusion transcripts were clearly detected. Similarly, plasma-derived EVs were characterized by NTA, flow cytometry, and the ExoView platform, the last showing that EV-specific markers captured EV populations containing ALK-fusion protein. Finally, ALK fusions were identified in 50% (8/16) of plasma EV-enriched fractions by dPCR, confirming the presence of fusion transcripts in EV fractions. CONCLUSIONS: ALK-fusion transcripts can be detected in EV-enriched fractions. These results set the stage for the development of EV-based noninvasive ALK testing.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Proteínas de Fusão Oncogênica/genética , RNA , Receptores Proteína Tirosina Quinases/genética
6.
J Immunol ; 205(11): 3130-3140, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33148714

RESUMO

Currently, there is a need for reliable tests that allow identification of individuals that have been infected with SARS-CoV-2 even if the infection was asymptomatic. To date, the vast majority of the serological tests for SARS-CoV-2-specific Abs are based on serum detection of Abs to either the viral spike glycoprotein (the major target for neutralizing Abs) or the viral nucleocapsid protein that is known to be highly immunogenic in other coronaviruses. Conceivably, exposure of Ags released from infected cells could stimulate Ab responses that might correlate with tissue damage and, hence, they may have some value as a prognostic indicator. We addressed whether other nonstructural viral proteins, not incorporated into the infectious viral particle, specifically the viral cysteine-like protease, might also be potent immunogens. Using ELISA tests, coating several SARS-CoV-2 proteins produced in vitro, we describe that COVID-19 patients make high titer IgG, IgM, and IgA Ab responses to the Cys-like protease from SARS-CoV-2, also known as 3CLpro or Mpro, and it can be used to identify individuals with positive serology against the coronavirus. Higher Ab titers in these assays associated with more-severe disease, and no cross-reactive Abs against prior betacoronavirus were found. Remarkably, IgG Abs specific for Mpro and other SARS-CoV-2 Ags can also be detected in saliva. In conclusion, Mpro is a potent Ag in infected patients that can be used in serological tests, and its detection in saliva could be the basis for a rapid, noninvasive test for COVID-19 seropositivity.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/metabolismo , Infecções por Coronavirus/sangue , Cisteína Proteases/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Pneumonia Viral/sangue , Saliva/metabolismo , Adulto , Idoso , COVID-19 , Feminino , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , SARS-CoV-2
7.
J Nanobiotechnology ; 20(1): 72, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35135541

RESUMO

BACKGROUND: Extracellular vesicles (EVs), released by most cell types, provide an excellent source of biomarkers in biological fluids. However, in order to perform validation studies and screenings of patient samples, it is still necessary to develop general techniques permitting rapid handling of small amounts of biological samples from large numbers of donors. RESULTS: Here we describe a method that, using just a few microliters of patient's plasma, identifies tumour markers exposed on EVs. Studying physico-chemical properties of EVs in solution, we demonstrate that they behave as stable colloidal suspensions and therefore, in immunocapture assays, many of them are unable to interact with a stationary functionalised surface. Using flocculation methods, like those used to destabilize colloids, we demonstrate that cationic polymers increase EV ζ-potential, diameter, and sedimentation coefficient and thus, allow a more efficient capture on antibody-coated surfaces by both ELISA and bead-assisted flow cytometry. These findings led to optimization of a protocol in microtiter plates allowing effective immunocapture of EVs, directly in plasma without previous ultracentrifugation or other EV enrichment. The method, easily adaptable to any laboratory, has been validated using plasma from lung cancer patients in which the epithelial cell marker EpCAM has been detected on EVs. CONCLUSIONS: This optimized high throughput, easy to automate, technology allows screening of large numbers of patients to phenotype tumour markers in circulating EVs, breaking barriers for the validation of proposed EV biomarkers and the discovery of new ones.


Assuntos
Vesículas Extracelulares , Biomarcadores Tumorais/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Imunoensaio , Biópsia Líquida/métodos , Ultracentrifugação
8.
Blood ; 130(10): 1205-1208, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28743717

RESUMO

Mutations in T-cell antigen receptor (TCR) subunit genes cause rare immunodeficiency diseases characterized by impaired expression of the TCR at the cell surface and selective T lymphopenia. Here, detailed analyses of spontaneously arising somatic mutations that recover CD247, and thus TCR expression, in a newly identified CD247-deficient patient are described. The recovery of CD247 expression in some patient T cells was associated with both reversion of the inactivating mutation and a variant with a compensating mutation that could reconstitute TCR expression, but not as efficiently as wild-type CD247. Multiple mutations were found in CD247 complementary DNAs (cDNAs) cloned from the patient as well as in cDNA and genomic DNA from other individuals, suggesting that genetic variation in this gene is frequent. Analyses of other genes mutated in primary immunodeficiency diseases (PIDs) where reversions have been described also revealed a higher rate of mutation than that observed for genes mutated in PIDs where revertants have not been identified or control genes. These data support the hypothesis that the occurrence of somatic mutations that may reconstitute genetic defects in PID is related to an increased propensity of those genes to mutate.


Assuntos
Complexo CD3/genética , Reparo do DNA/genética , Regulação da Expressão Gênica , Síndromes de Imunodeficiência/genética , Humanos , Leucócitos Mononucleares/metabolismo , Mutação/genética , Probabilidade
9.
J Biol Chem ; 292(50): 20472-20480, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-28986447

RESUMO

Self/non-self-discrimination by the innate immune system relies on germline-encoded, non-rearranging receptors expressed by innate immune cells recognizing conserved pathogen-associated molecular patterns. The natural killer group 2D (NKG2D) receptor is a potent immune-activating receptor that binds human genome-encoded ligands, whose expression is negligible in normal tissues, but increased in stress and disease conditions for reasons that are incompletely understood. Here it is not clear how the immune system reconciles receptor binding of self-proteins with self/non-self-discrimination to avoid autoreactivity. We now report that increased expression of NKG2D ligands after virus infection depends on interferon response factors activated by the detection of viral double-stranded RNA by pattern-recognition receptors (RIG-I/MDA-5) and that NKG2D ligand up-regulation can be blocked by the expression of viral dsRNA-binding proteins. Thus, innate immunity-mediated recognition of viral nucleic acids triggers the infected cell to release interferon for NK cell recruitment and to express NKG2D ligands to become more visible to the immune system. Finally, the observation that NKG2D-ligand induction is a consequence of signaling by pattern-recognition receptors that have been selected over evolutionary time to be highly pathogen-specific explains how the risks of autoreactivity in this system are minimized.


Assuntos
Regulação da Expressão Gênica , Imunidade Inata , Células Matadoras Naturais/metabolismo , Lentivirus/fisiologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/agonistas , RNA Viral/metabolismo , Substituição de Aminoácidos , Animais , Linhagem Celular , Células Cultivadas , Cricetinae , Proteína DEAD-box 58/química , Proteína DEAD-box 58/genética , Proteína DEAD-box 58/metabolismo , Regulação Viral da Expressão Gênica , Genes Reporter , Humanos , Helicase IFIH1 Induzida por Interferon/química , Helicase IFIH1 Induzida por Interferon/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/virologia , Lentivirus/imunologia , Ligantes , Mutação , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores Imunológicos , Proteínas Recombinantes/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
10.
J Nanobiotechnology ; 16(1): 47, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720199

RESUMO

BACKGROUND: Tumour-derived exosomes can be released to serum and provide information on the features of the malignancy, however, in order to perform systematic studies in biological samples, faster diagnostic techniques are needed, especially for detection of low abundance proteins. Most human cancer cells are positive for at least one ligand for the activating immune receptor NKG2D and the presence in plasma of NKG2D-ligands can be associated with prognosis. METHODS: Using MICA as example of a tumour-derived antigen, endogenously expressed in metastatic melanoma and recruited to exosomes, we have developed two immunocapture-based assays for detection of different epitopes in nanovesicles. Although both techniques, enzyme-linked immunosorbent assay (ELISA) and Lateral flow immunoassays (LFIA) have the same theoretical basis, that is, using capture and detection antibodies for a colorimetric read-out, analysis of exosome-bound proteins poses methodological problems that do not occur when these techniques are used for detection of soluble molecules, due to the presence of multiple epitopes on the vesicle. RESULTS: Here we demonstrate that, in ELISA, the signal obtained was directly proportional to the amount of epitopes per exosome. In LFIA, the amount of detection antibody immobilized in Au-nanoparticles needs to be low for efficient detection, otherwise steric hindrance results in lower signal. We describe the conditions for detection of MICA in exosomes and prove, for the first time using both techniques, the co-existence in one vesicle of exosomal markers (the tetraspanins CD9, CD63 and CD81) and an endogenously expressed tumour-derived antigen. The study also reveals that scarce proteins can be used as targets for detection antibody in LFIA with a better result than very abundant proteins and that the conditions can be optimized for detection of the protein in plasma. CONCLUSIONS: These results open the possibility of analyzing biological samples for the presence of tumour-derived exosomes using high throughput techniques.


Assuntos
Antígenos de Neoplasias/sangue , Exossomos/química , Antígenos de Histocompatibilidade Classe I/sangue , Imunoensaio/métodos , Melanoma/sangue , Linhagem Celular Tumoral , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Nanopartículas/química , Tetraspaninas/sangue
11.
Immunol Cell Biol ; 94(5): 479-85, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26732147

RESUMO

The expression of NKG2D ligands (NKG2D-L) flag stressed cells for immune recognition and destruction. A precise control of the cell surface expression of these proteins is therefore required to ensure an appropriate immune response and it is becoming clear that NKG2D ligand expression is regulated at multiple levels. We now report that the surface stability of the human glycosyl-phosphatidyl-inositol (GPI)-anchored ligand ULBP1 (UL16-binding protein) at the plasma membrane is lower than other ULBP molecules. This difference in stability is due neither to shedding nor to a higher internalization rate of ULBP1 but rather occurs because of a rapid degradation of ULBP1 protein after internalization from the cell surface that is blocked by proteasome inhibition. These data indicate that, in addition to the known transcriptional and post-translational mechanisms, surface expression of human NKG2D-L is also regulated by protein turnover and that the brief residence of ULBP1 could contribute to the fine tuning of immune responses.


Assuntos
Membrana Celular/metabolismo , Endocitose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Animais , Células CHO , Membrana Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Endocitose/efeitos dos fármacos , Glicosilfosfatidilinositóis/metabolismo , Meia-Vida , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Inibidores de Proteassoma/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos
12.
J Immunol ; 193(3): 1344-52, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24973455

RESUMO

Proteolytic shedding of ligands for the NK group 2D (NKG2D) receptor is a strategy used by tumors to modulate immune recognition by NK cells and cytotoxic T cells. A number of metalloproteases, especially those of the A disintegrin and metalloprotease (ADAM) family, can mediate NKG2D ligand cleavage and this process can be modulated by expression of the thiol isomerase ERp5. In this article, we describe that an increased shedding of the NKG2D ligand MICA is observed postinfection with several strains of human CMV due to an enhanced activity of ADAM17 (TNF-α converting enzyme) and matrix metalloprotease 14 caused by a reduction in the expression of the endogenous inhibitor of metalloproteases tissue inhibitors of metalloproteinase 3 (TIMP3). This decrease in TIMP3 expression correlates with increased expression of a cellular miRNA known to target TIMP3, and we also identify a human CMV-encoded microRNA able to modulate TIMP3 expression. These observations characterize a novel viral strategy to influence the shedding of cell-surface molecules involved in immune response modulation. They also provide an explanation for previous reports of increased levels of various ADAM17 substrates in the serum from patients with CMV disease. Consistent with this hypothesis, we detected soluble MICA in serum of transplant recipients with CMV disease. Finally, these data suggest that it might be worthwhile to prospectively study ADAM17 activity in a larger group of patients to assay whether this might be a useful biomarker to identify patients at risk for development of CMV disease.


Assuntos
Infecções por Citomegalovirus/imunologia , Regulação para Baixo/imunologia , Regulação Viral da Expressão Gênica/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , MicroRNAs/genética , Inibidor Tecidual de Metaloproteinase-3/antagonistas & inibidores , Inibidor Tecidual de Metaloproteinase-3/biossíntese , Linhagem Celular Tumoral , Citomegalovirus/genética , Citomegalovirus/imunologia , Infecções por Citomegalovirus/enzimologia , Infecções por Citomegalovirus/genética , Regulação para Baixo/genética , Antígenos de Histocompatibilidade Classe I/sangue , Humanos , Metaloproteinase 14 da Matriz/sangue , Metaloproteinase 14 da Matriz/metabolismo , MicroRNAs/biossíntese , Cultura Primária de Células , Especificidade por Substrato/genética , Especificidade por Substrato/imunologia , Inibidor Tecidual de Metaloproteinase-3/sangue , Regulação para Cima/genética , Regulação para Cima/imunologia
14.
Immunology ; 146(1): 70-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25980678

RESUMO

After immune interactions, membrane fragments can be transferred between cells. This fast transfer of molecules is transient and shows selectivity for certain proteins; however, the constraints underlying acquisition of a protein are unknown. To characterize the mechanism and functional consequences of this process in natural killer (NK) cells, we have compared the transfer of different NKG2D ligands. We show that human NKG2D ligands can be acquired by NK cells with different efficiencies. The main findings are that NKG2D ligand transfer is related to immune activation and receptor-ligand interaction and that NK cells acquire these proteins during interactions with target cells that lead to degranulation. Our results further demonstrate that NK cells that have acquired NKG2D ligands can stimulate activation of autologous NK cells. Surprisingly, NK cells can also re-transfer the acquired molecule to autologous effector cells during this immune recognition that leads to their death. These data demonstrate that transfer of molecules occurs as a consequence of immune recognition and imply that this process might play a role in homeostatic tuning-down of the immune response or be used as marker of interaction.


Assuntos
Degranulação Celular/imunologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células Matadoras Naturais/imunologia , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Citotoxicidade Imunológica/imunologia , Proteínas Ligadas por GPI/metabolismo , Glicosilfosfatidilinositóis , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Transporte Proteico , Receptores de Células Matadoras Naturais/imunologia
15.
Biochem J ; 454(2): 295-302, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23772752

RESUMO

The human MICA (MHC I-related chain A) gene, encoding a ligand for the NKG2D (NKG2-D type II integral membrane protein) receptor, is highly polymorphic. A group of MICA alleles, named MICA 5.1 (prototype, MICA*008), produce a truncated protein due to a nucleotide insertion in the transmembrane domain. These alleles are very frequent in all of the human populations studied and they have different biological properties, compared with full-length alleles, e.g. recruitment into exosomes, which makes them very potent for down-modulating the NKG2D receptor in effector immune cells. Moreover, MICA*008 is not affected by viral immune evasion mechanisms that target other MICA alleles. In the present study, we demonstrate that MICA*008 acquires a GPI (glycosylphosphatidylinositol) anchor and that this modification is responsible for many of the distinct biological features of the truncated MICA alleles, including recruitment of the protein to exosomes. MICA*008 processing is also unusual as it is observed in the endoplasmic reticulum as a Triton™ X-114 soluble protein, partially undergoing GPI modification while the rest is exocytosed, suggesting a new model for MICA*008 release. This is the first report of a GPI-anchored MICA allele. The finding that this modification occurs in both families of human NKG2D ligands, as well as in the murine system, suggests positive pressure to maintain this biochemical feature.


Assuntos
Proteínas Ligadas por GPI/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Polimorfismo Genético , Alelos , Animais , Células CHO , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Exossomos/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Glicosilfosfatidilinositóis/análise , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Ligantes , Mutagênese Insercional , Processamento de Proteína Pós-Traducional , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Solubilidade
17.
Front Immunol ; 15: 1273942, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410511

RESUMO

Introduction: It is now clear that coronavirus disease 19 (COVID-19) severity is associated with a dysregulated immune response, but the relative contributions of different immune cells is still not fully understood. SARS CoV-2 infection triggers marked changes in NK cell populations, but there are contradictory reports as to whether these effector lymphocytes play a protective or pathogenic role in immunity to SARS-CoV-2. Methods: To address this question we have analysed differences in the phenotype and function of NK cells in SARS-CoV-2 infected individuals who developed either very mild, or life-threatening COVID-19 disease. Results: Although NK cells from patients with severe disease appeared more activated and the frequency of adaptive NK cells was increased, they were less potent mediators of ADCC than NK cells from patients with mild disease. Further analysis of peripheral blood NK cells in these patients revealed that a population of NK cells that had lost expression of the activating receptor NKG2D were a feature of patients with severe disease and this correlated with elevated levels of cell free NKG2D ligands, especially ULBP2 and ULBP3 in the plasma of critically ill patients. In vitro, culture in NKG2DL containing patient sera reduced the ADCC function of healthy donor NK cells and this could be blocked by NKG2DL-specific antibodies. Discussion: These observations of reduced NK function in severe disease are consistent with the hypothesis that defects in immune surveillance by NK cells permit higher levels of viral replication, rather than that aberrant NK cell function contributes to immune system dysregulation and immunopathogenicity.


Assuntos
COVID-19 , Citotoxicidade Imunológica , Humanos , COVID-19/patologia , Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , SARS-CoV-2/metabolismo
18.
J Leukoc Biol ; 115(5): 985-991, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38245016

RESUMO

The membrane (M) glycoprotein of SARS-CoV-2 is one of the key viral proteins regulating virion assembly and morphogenesis. Immunologically, the M protein is a major source of peptide antigens driving T cell responses, and most individuals who have been infected with SARS-CoV-2 make antibodies to the N-terminal, surface-exposed peptide of the M protein. We now report that although the M protein is abundant in the viral particle, antibodies to the surface-exposed N-terminal epitope of M do not appear to neutralize the virus. M protein-specific antibodies do, however, activate antibody-dependent cell-mediated cytotoxicity and cytokine secretion by primary human natural killer cells. Interestingly, while patients with severe or mild disease make comparable levels of M antigen-binding antibodies, M-specific antibodies from the serum of critically ill patients are significantly more potent activators of antibody-dependent cell-mediated cytotoxicity than antibodies found in individuals with mild or asymptomatic infection.


Assuntos
Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , COVID-19 , Estado Terminal , Células Matadoras Naturais , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Anticorpos Antivirais/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Receptores Fc/imunologia , Receptores Fc/metabolismo , Anticorpos Neutralizantes/imunologia , Proteínas M de Coronavírus/imunologia , Feminino , Pessoa de Meia-Idade , Masculino
19.
Front Immunol ; 15: 1282680, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318189

RESUMO

Background: Helicobacter pylori (H. pylori) uses various strategies that attenuate mucosal immunity to ensure its persistence in the stomach. We recently found evidence that H. pylori might modulate the natural killer group 2, member 2 (NKG2D) system. The NKG2D receptor and its ligands are a major activation system of natural killer and cytotoxic T cells, which are important for mucosal immunity and tumor immunosurveillance. The NKG2D system allows recognition and elimination of infected and transformed cells, however viruses and cancers often subvert its activation. Here we aimed to identify a potential evasion of the NKG2D system in H. pylori infection. Methods: We analyzed expression of NKG2D system genes in gastric tissues of H. pylori gastritis and gastric cancer patients, and performed cell-culture based infection experiments using H. pylori isogenic mutants and epithelial and NK cell lines. Results: In biopsies of H. pylori gastritis patients, NKG2D receptor expression was reduced while NKG2D ligands accumulated in the lamina propria, suggesting NKG2D evasion. In vitro, H. pylori induced the transcription and proteolytic shedding of NKG2D ligands in stomach epithelial cells, and these effects were associated with specific H. pylori virulence factors. The H. pylori-driven release of soluble NKG2D ligands reduced the immunogenic visibility of infected cells and attenuated the cytotoxic activity of effector immune cells, specifically the anti-tumor activity of NK cells. Conclusion: H. pylori manipulates the NKG2D system. This so far unrecognized strategy of immune evasion by H. pylori could potentially facilitate chronic bacterial persistence and might also promote stomach cancer development by allowing transformed cells to escape immune recognition and grow unimpeded to overt malignancy.


Assuntos
Gastrite , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Evasão da Resposta Imune , Infecções por Helicobacter/metabolismo , Células Matadoras Naturais , Neoplasias Gástricas/patologia , Gastrite/metabolismo , Peptídeo Hidrolases/metabolismo
20.
Sci Rep ; 14(1): 13133, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849432

RESUMO

The short-lived nature and heterogeneity of Natural Killer (NK) cells limit the development of NK cell-based therapies, despite their proven safety and efficacy against cancer. Here, we describe the biological basis, detailed phenotype and function of long-lived anti-tumour human NK cells (CD56highCD16+), obtained without cell sorting or feeder cells, after priming of peripheral blood cells with Bacillus Calmette-Guérin (BCG). Further, we demonstrate that survival doses of a cytokine combination, excluding IL18, administered just weekly to BCG-primed NK cells avoids innate lymphocyte exhaustion and leads to specific long-term proliferation of innate cells that exert potent cytotoxic function against a broad range of solid tumours, mainly through NKG2D. Strikingly, a NKG2C+CD57-FcεRIγ+ NK cell population expands after BCG and cytokine stimulation, independently of HCMV serology. This strategy was exploited to rescue anti-tumour NK cells even from the suppressor environment of cancer patients' bone marrow, demonstrating that BCG confers durable anti-tumour features to NK cells.


Assuntos
Proliferação de Células , Células Matadoras Naturais , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias/imunologia , Neoplasias/tratamento farmacológico , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Mycobacterium bovis/imunologia , Ativação Linfocitária/efeitos dos fármacos , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Interleucinas/metabolismo , Antígeno CD56/metabolismo , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA