RESUMO
AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
Assuntos
Fibrilação Atrial , Diabetes Mellitus Tipo 2 , Humanos , Síndrome do Nó Sinusal/genética , Queratina-8/genética , Estudo de Associação Genômica Ampla , Diabetes Mellitus Tipo 2/complicações , Fibrilação Atrial/complicações , Triglicerídeos , Análise da Randomização MendelianaRESUMO
AIMS: The aim of this study was to use human genetics to investigate the pathogenesis of sick sinus syndrome (SSS) and the role of risk factors in its development. METHODS AND RESULTS: We performed a genome-wide association study of 6469 SSS cases and 1 000 187 controls from deCODE genetics, the Copenhagen Hospital Biobank, UK Biobank, and the HUNT study. Variants at six loci associated with SSS, a reported missense variant in MYH6, known atrial fibrillation (AF)/electrocardiogram variants at PITX2, ZFHX3, TTN/CCDC141, and SCN10A and a low-frequency (MAF = 1.1-1.8%) missense variant, p.Gly62Cys in KRT8 encoding the intermediate filament protein keratin 8. A full genotypic model best described the p.Gly62Cys association (P = 1.6 × 10-20), with an odds ratio (OR) of 1.44 for heterozygotes and a disproportionally large OR of 13.99 for homozygotes. All the SSS variants increased the risk of pacemaker implantation. Their association with AF varied and p.Gly62Cys was the only variant not associating with any other arrhythmia or cardiovascular disease. We tested 17 exposure phenotypes in polygenic score (PGS) and Mendelian randomization analyses. Only two associated with the risk of SSS in Mendelian randomization, AF, and lower heart rate, suggesting causality. Powerful PGS analyses provided convincing evidence against causal associations for body mass index, cholesterol, triglycerides, and type 2 diabetes (P > 0.05). CONCLUSION: We report the associations of variants at six loci with SSS, including a missense variant in KRT8 that confers high risk in homozygotes and points to a mechanism specific to SSS development. Mendelian randomization supports a causal role for AF in the development of SSS.
Assuntos
Fibrilação Atrial , Diabetes Mellitus Tipo 2 , Marca-Passo Artificial , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla , Humanos , Canal de Sódio Disparado por Voltagem NAV1.8 , Síndrome do Nó Sinusal/genéticaRESUMO
Most sequence variants identified hitherto in genome-wide association studies (GWAS) of atrial fibrillation are common, non-coding variants associated with risk through unknown mechanisms. We performed a meta-analysis of GWAS of atrial fibrillation among 29,502 cases and 767,760 controls from Iceland and the UK Biobank with follow-up in samples from Norway and the US, focusing on low-frequency coding and splice variants aiming to identify causal genes. We observe associations with one missense (OR = 1.20) and one splice-donor variant (OR = 1.50) in RPL3L, the first ribosomal gene implicated in atrial fibrillation to our knowledge. Analysis of 167 RNA samples from the right atrium reveals that the splice-donor variant in RPL3L results in exon skipping. We also observe an association with a missense variant in MYZAP (OR = 1.38), encoding a component of the intercalated discs of cardiomyocytes. Both discoveries emphasize the close relationship between the mechanical and electrical function of the heart.