Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202400316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422224

RESUMO

New 1H-1,2,4-triazolyl derivatives were synthesized, and six of them were selected based on docking prediction for the investigation of their antimicrobial activity against five bacterial and eight fungal strains. All compounds demonstrated antibacterial activity with MIC lower than that of the ampicillin and chloramphenicol. In general, the most sensitive bacteria appeared to be P. fluorescens, while the plant pathogen X. campestris was the most resistant. The antifungal activity of the compounds was much better than the antibacterial activity. All compounds were more potent (6 to 45 times) than reference drugs ketoconazole and bifonazole with the best activity achieved by compound 4 a. A. versicolor, A. ochraceus, A.niger, and T.viride showed the highest sensitivity to compound 4 b, while, T. viride, P. funiculosum, and P.ochrochloron showed good sensitivity to compound 4 a. Molecular docking studies suggest that the probable mechanism of antibacterial activity involves the inhibition of the MurB enzyme of E. coli, while CYP51 of C. albicans appears to be involved in the mechanism of antifungal activity. It is worth mentioning that none of the tested compounds violated Lipinski's rule of five.


Assuntos
Antibacterianos , Antifúngicos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Triazóis , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/síntese química , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Fungos/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Escherichia coli/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química
2.
Molecules ; 26(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299579

RESUMO

Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.


Assuntos
Antifúngicos , Cromonas , Hypocreales/crescimento & desenvolvimento , Fungos Mitospóricos/crescimento & desenvolvimento , Simulação de Acoplamento Molecular , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Cromonas/síntese química , Cromonas/química , Cromonas/farmacologia , Avaliação Pré-Clínica de Medicamentos
3.
Bioorg Med Chem Lett ; 30(17): 127368, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32738986

RESUMO

1,2,4-Triazole is a very important scaffold in medicinal chemistry due to the wide spectrum of biological activities and mainly antifungal activity of 1,2,4-triazole derivatives. The main mechanism of antifungal action of the latter is inhibition of 14-alpha-demethylase enzyme (CYP51). The current study presents synthesis and evaluation of eight triazole derivatives for their antimicrobial activity. Docking studies to elucidate the mechanism of action were also performed. The designed compounds were synthesized using classical methods of organic synthesis. The in vivo evaluation of antimicrobial activity was performed by microdilution method. All tested compounds showed good antibacterial activity with MIC and MBC values ranging from 0.0002 to 0.0069 mM. Compound 2 h appeared to be the most active among all tested with MIC at 0.0002-0.0033 mM and MBC at 0.0004-0.0033 mM followed by compounds 2f and 2g. The most sensitive bacterium appeared to be Xanthomonas campestris while Erwinia amylovora was the most resistant. The evaluation of antifungal activity revealed that all compounds showed good antifungal activity with MIC values ranging from 0.02 mM to 0.52 mM and MFC from 0.03 mM to 0.52 mM better than reference drugs ketoconazole (MIC and MFC values at 0.28-1.88 mM and 0.38 mM to 2.82 mM respectively) and bifonazole (MIC and MFC values at 0.32-0.64 mM and 0.64-0.81 mM). The best antifungal activity is displayed by compound 2 h with MIC at 0.02-0.04 mM and MFC at 0.03-0.06 mM while compound 2a showed the lowest activity. The results showed that these compounds could be lead compounds in search for new potent antimicrobial agents. Docking studies confirmed experimental results.


Assuntos
Anti-Infecciosos/síntese química , Triazóis/química , Antibacterianos/síntese química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Antifúngicos/farmacologia , Sítios de Ligação , DNA Girase/química , DNA Girase/metabolismo , Desenho de Fármacos , Erwinia amylovora/efeitos dos fármacos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Núcleosídeo-Fosfato Quinase/química , Núcleosídeo-Fosfato Quinase/metabolismo , Relação Estrutura-Atividade , Triazóis/metabolismo , Triazóis/farmacologia , Xanthomonas campestris/efeitos dos fármacos
4.
Antibiotics (Basel) ; 11(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35625232

RESUMO

The control of fungal pathogens is increasingly difficult due to the limited number of effective drugs available for antifungal therapy. In addition, both humans and fungi are eukaryotic organisms; antifungal drugs may have significant toxicity due to the inhibition of related human targets. Furthermore, another problem is increased incidents of fungal resistance to azoles, such as fluconazole, ketoconazole, voriconazole, etc. Thus, the interest in developing new azoles with an extended spectrum of activity still attracts the interest of the scientific community. Herein, we report the synthesis of a series of triazolium salts, an evaluation of their antifungal activity, and docking studies. Ketoconazole and bifonazole were used as reference drugs. All compounds showed good antifungal activity with MIC/MFC in the range of 0.0003 to 0.2/0.0006-0.4 mg/mL. Compound 19 exhibited the best activity among all tested with MIC/MFC in the range of 0.009 to 0.037 mg/mL and 0.0125-0.05 mg/mL, respectively. All compounds appeared to be more potent than both reference drugs. The docking studies are in accordance with experimental results.

5.
Curr Top Med Chem ; 19(8): 609-619, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834838

RESUMO

BACKGROUND: High numbers of infection with resistant forms of Micobacterium tuberculosis (Mtb) contribute to a constant growing demand in new highly active and effective therapeutics. Current drug discovery efforts directed towards new antituberculosis agents include the development of new inhibitors of enoyl-acyl carrier protein reductase (InhA) that do not require activation by the specific enzymes. Tryptanthrin is a known inhibitor of Mtb InhA and its analogues are investigated as potential agents with antimycobacterial efficiency. OBJECTIVE: The main objective of the presented research was to develop a new group of tryptanthrin analogues with good inhibition properties against Mtb. METHODS: Synthesis of new derivatives of 5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one and evaluation of their activity against Mtb, as well as acute and chronic toxicity studies were carried out. Molecular modeling studies were performed to investigate the binding mechanisms of the synthesized ligands with InhA. Binding energies and non-covalent interactions stabilizing the ligand-receptor complexes were obtained from the results of molecular docking. RESULTS: The most active compound in the obtained series, 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3- b]quinazolin-5-one, exhibited the superior inhibition activity (up to 100%) against mycobacterial growth at MIC 6.5 µg/mL, showed good affinity to the InhA enzyme in docking studies and demonstrated a very low per oral toxicity in animals falling under the category 5 according to GHS classification. CONCLUSION: 2-(propylthio)-5H-[1,3,4]thiadiazolo[2,3-b]quinazolin-5-one can be further explored for the development of a new series of compounds active against Mtb.


Assuntos
Antituberculosos/síntese química , Antituberculosos/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Mycobacterium tuberculosis/efeitos dos fármacos , Animais , Proteínas de Bactérias/química , Sítios de Ligação , Masculino , Camundongos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Quinazolinas/química , Relação Estrutura-Atividade , Testes de Toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA