Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(10): 1293-1301, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32807944

RESUMO

The SARS-CoV-2 virus emerged in December 2019 and has caused a worldwide pandemic due to the lack of any pre-existing immunity. Accurate serology testing is urgently needed to help diagnose infection, determine past exposure of populations and assess the response to a future vaccine. The landscape of antibody responses to SARS-CoV-2 is unknown. In this study, we utilized the luciferase immunoprecipitation system to assess the antibody responses to 15 different SARS-CoV-2 antigens in patients with COVID-19. We identified new targets of the immune response to SARS-CoV-2 and show that nucleocapsid, open reading frame (ORF)8 and ORF3b elicit the strongest specific antibody responses. ORF8 and ORF3b antibodies, taken together as a cluster of points, identified 96.5% of COVID-19 samples at early and late time points of disease with 99.5% specificity. Our findings could be used to develop second-generation diagnostic tests to improve serological assays for COVID-19 and are important in understanding pathogenicity.


Assuntos
Anticorpos Antivirais/sangue , Betacoronavirus/imunologia , Técnicas de Laboratório Clínico/métodos , Infecções por Coronavirus/diagnóstico , Pneumonia Viral/diagnóstico , Proteínas Virais/imunologia , Adulto , Idoso , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , COVID-19 , Teste para COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Feminino , Hong Kong , Humanos , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , SARS-CoV-2 , Sensibilidade e Especificidade , Fatores de Tempo
4.
Nature ; 621(7977): 120-128, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37558883

RESUMO

Humans display substantial interindividual clinical variability after SARS-CoV-2 infection1-3, the genetic and immunological basis of which has begun to be deciphered4. However, the extent and drivers of population differences in immune responses to SARS-CoV-2 remain unclear. Here we report single-cell RNA-sequencing data for peripheral blood mononuclear cells-from 222 healthy donors of diverse ancestries-that were stimulated with SARS-CoV-2 or influenza A virus. We show that SARS-CoV-2 induces weaker, but more heterogeneous, interferon-stimulated gene activity compared with influenza A virus, and a unique pro-inflammatory signature in myeloid cells. Transcriptional responses to viruses display marked population differences, primarily driven by changes in cell abundance including increased lymphoid differentiation associated with latent cytomegalovirus infection. Expression quantitative trait loci and mediation analyses reveal a broad effect of cell composition on population disparities in immune responses, with genetic variants exerting a strong effect on specific loci. Furthermore, we show that natural selection has increased population differences in immune responses, particularly for variants associated with SARS-CoV-2 response in East Asians, and document the cellular and molecular mechanisms by which Neanderthal introgression has altered immune functions, such as the response of myeloid cells to viruses. Finally, colocalization and transcriptome-wide association analyses reveal an overlap between the genetic basis of immune responses to SARS-CoV-2 and COVID-19 severity, providing insights into the factors contributing to current disparities in COVID-19 risk.


Assuntos
COVID-19 , Genética Populacional , SARS-CoV-2 , Análise da Expressão Gênica de Célula Única , Animais , Humanos , Diferenciação Celular , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Citomegalovirus/fisiologia , População do Leste Asiático/genética , Introgressão Genética , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Interferons/imunologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células Mieloides/imunologia , Homem de Neandertal/genética , Homem de Neandertal/imunologia , SARS-CoV-2/genética , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , SARS-CoV-2/fisiologia , Seleção Genética , Latência Viral
5.
Clin Infect Dis ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39041887

RESUMO

BACKGROUND: Studies have reported that repeated annual vaccination may influence influenza vaccination effectiveness in the current season. METHODS: We established a 5-year randomized placebo-controlled trial of repeated influenza vaccination (Flublok, Sanofi Pasteur) in adults 18-45 years of age. In the first two years, participants received vaccination (V) or saline placebo (P) as follows: P-P, P-V, or V-V. Serum samples were collected each year just before vaccination and after 30 and 182 days. A subset of sera collected at 5 timepoints from 95 participants were tested for antibodies against vaccine strains. RESULTS: From 23 October 2020 through 11 March 2021 we enrolled and randomized 447 adults. Among vaccinated individuals, antibody titers increased between days 0 and 30 against each of the vaccine strains, with smaller increases for repeat vaccinees who on average had higher pre-vaccination titers in year 2. There were statistically significant differences in the proportion of participants achieving >=four-fold rises in antibody titer for the repeat vaccinees for influenza A(H1N1), B/Victoria and B/Yamagata, but not for A(H3N2). Among participants who received vaccination in year 2, there were no statistically significant differences between the P-V and V-V groups in geometric mean titers at day 30 or the proportions of participants with antibody titers ≥40 at day 30 for any of the vaccine strains. CONCLUSIONS: In the first two years, during which influenza did not circulate, repeat vaccinees and first-time vaccinees had similar post-vaccination geometric mean titers to all four vaccine strains, indicative of similar levels of clinical protection.

6.
Immunol Cell Biol ; 101(6): 514-524, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36401824

RESUMO

Influenza A viruses (IAVs) exist as distinct serological subtypes, with limited antibody cross reactivity compared with T-cell responses, leading to universal vaccines that elicit robust T-cell responses entering clinical trials to combat pandemic and zoonotic outbreaks. Previously we have extensively characterized the viral-vectored universal vaccine, Wyeth/IL-15/5flu, a group 1 hemagglutinin, H5N1-based vaccine using a vaccinia backbone with interleukin (IL)-15. The vaccine elicits robust T-cell responses to provide heterosubtypic protection from lethal infection; however, we have also observed short-term morbidity of vaccinated mice with a disparity between the effects of sublethal infection with group 1 and 2 IAV strains. At day 3 of H3N2 (group 2 IAV) infection, there was a heavily skewed T helper type 1 response in vaccinated infected mice with overproduction of cytokines and reduced chemokines, whereas H1N1 (group 1 IAV) infection had increased innate cellular responses. These findings suggest that increased and early immune activation by T-cell activating vaccines may induce mild immunopathology when there is a mismatch between non-neutralizing antibody and cross-reactive memory T-cell responses leading to exuberant cytokine production. Therefore, to avoid overstimulating proinflammatory immune responses upon infection, universal influenza vaccines that elicit strong T-cell immunity will need a robust cross-reactive antibody response.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Citocinas , Vírus da Influenza A Subtipo H3N2 , Anticorpos Antivirais
7.
Respirology ; 27(4): 301-310, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34820940

RESUMO

BACKGROUND AND OBJECTIVE: Few head-to-head evaluations of immune responses to different vaccines have been reported. METHODS: Surrogate virus neutralization test (sVNT) antibody levels of adults receiving either two doses of BNT162b2 (n = 366) or CoronaVac (n = 360) vaccines in Hong Kong were determined. An age-matched subgroup (BNT162b2 [n = 49] vs. CoronaVac [n = 49]) was tested for plaque reduction neutralization (PRNT) and spike-binding antibody and T-cell reactivity in peripheral blood mononuclear cells. RESULTS: One month after the second dose of vaccine, BNT162b2 elicited significantly higher PRNT50 , PRNT90 , sVNT, spike receptor binding, spike N-terminal domain binding, spike S2 domain binding, spike FcR binding and antibody avidity levels than CoronaVac. The geometric mean PRNT50 titres in those vaccinated with BNT162b2 and CoronaVac vaccines were 251.6 and 69.45, while PRNT90 titres were 98.91 and 16.57, respectively. All of those vaccinated with BNT162b2 and 45 (91.8%) of 49 vaccinated with CoronaVac achieved the 50% protection threshold for PRNT90. Allowing for an expected seven-fold waning of antibody titres over 6 months for those receiving CoronaVac, only 16.3% would meet the 50% protection threshold versus 79.6% of BNT162b2 vaccinees. Age was negatively correlated with PRNT90 antibody titres. Both vaccines induced SARS-CoV-2-specific CD4+ and CD8+ T-cell responses at 1 month post-vaccination but CoronaVac elicited significantly higher structural protein-specific CD4+ and CD8+ T-cell responses. CONCLUSION: Vaccination with BNT162b2 induces stronger humoral responses than CoronaVac. CoronaVac induces higher CD4+ and CD8+ T-cell responses to the structural protein than BNT162b2.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Adulto , Vacina BNT162 , COVID-19/prevenção & controle , Hong Kong , Humanos , Leucócitos Mononucleares , SARS-CoV-2
8.
Vet Pathol ; 59(4): 639-647, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34467820

RESUMO

Several animal models have been developed to study the pathophysiology of SARS-CoV-2 infection and to evaluate vaccines and therapeutic agents for this emerging disease. Similar to infection with SARS-CoV-1, infection of Syrian hamsters with SARS-CoV-2 results in moderate respiratory disease involving the airways and lung parenchyma but does not lead to increased mortality. Using a combination of immunohistochemistry and transmission electron microscopy, we showed that the epithelium of the conducting airways of hamsters was the primary target for viral infection within the first 5 days of infection, with little evidence of productive infection of pneumocytes. At 6 days postinfection, antigen was cleared but parenchymal damage persisted, and the major pathological changes resolved by day 14. These findings are similar to those previously reported for hamsters with SARS-CoV-1 infection. In contrast, infection of K18-hACE2 transgenic mice resulted in pneumocyte damage, with viral particles and replication complexes in both type I and type II pneumocytes together with the presence of convoluted or cubic membranes; however, there was no evidence of virus replication in the conducting airways. The Syrian hamster is a useful model for the study of SARS-CoV-2 transmission and vaccination strategies, whereas infection of the K18-hCE2 transgenic mouse results in lethal disease with fatal neuroinvasion but with sparing of conducting airways.


Assuntos
COVID-19 , Sistema Respiratório , Tropismo Viral , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19/virologia , Cricetinae , Modelos Animais de Doenças , Pulmão/patologia , Mesocricetus , Camundongos , Camundongos Transgênicos , Sistema Respiratório/virologia , SARS-CoV-2/genética
9.
Emerg Infect Dis ; 27(12): 3173-3175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34559046

RESUMO

The infectivity of severe acute respiratory syndrome coronavirus 2 in deceased persons and organisms remains unclear. We studied transgenic K18 hACE2 mice to determine the kinetics of virus infectivity after host death. Five days after death, virus infectivity in the lung declined by >96% and RNA copies declined by 48.2%.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Modelos Animais de Doenças , Humanos , Pulmão , Camundongos , Camundongos Transgênicos
10.
Clin Infect Dis ; 71(7): 1704-1714, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31828291

RESUMO

BACKGROUND: Enhanced influenza vaccines may improve protection for older adults, but comparative immunogenicity data are limited. Our objective was to examine immune responses to enhanced influenza vaccines, compared to standard-dose vaccines, in community-dwelling older adults. METHODS: Community-dwelling older adults aged 65-82 years in Hong Kong were randomly allocated (October 2017-January 2018) to receive 2017-2018 Northern hemisphere formulations of a standard-dose quadrivalent vaccine, MF59-adjuvanted trivalent vaccine, high-dose trivalent vaccine, or recombinant-hemagglutinin (rHA) quadrivalent vaccine. Sera collected from 200 recipients of each vaccine before and at 30-days postvaccination were assessed for antibodies to egg-propagated vaccine strains by hemagglutination inhibition (HAI) and to cell-propagated A/Hong Kong/4801/2014(H3N2) virus by microneutralization (MN). Influenza-specific CD4+ and CD8+ T cell responses were assessed in 20 participants per group. RESULTS: Mean fold rises (MFR) in HAI titers to egg-propagated A(H1N1) and A(H3N2) and the MFR in MN to cell-propagated A(H3N2) were statistically significantly higher in the enhanced vaccine groups, compared to the standard-dose vaccine. The MFR in MN to cell-propagated A(H3N2) was highest among rHA recipients (4.7), followed by high-dose (3.4) and MF59-adjuvanted (2.9) recipients, compared to standard-dose recipients (2.3). Similarly, the ratio of postvaccination MN titers among rHA recipients to cell-propagated A(H3N2) recipients was 2.57-fold higher than the standard-dose vaccine, which was statistically higher than the high-dose (1.33-fold) and MF59-adjuvanted (1.43-fold) recipient ratios. Enhanced vaccines also resulted in the boosting of T-cell responses. CONCLUSIONS: In this head-to-head comparison, older adults receiving enhanced vaccines showed improved humoral and cell-mediated immune responses, compared to standard-dose vaccine recipients. CLINICAL TRIALS REGISTRATION: NCT03330132.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Adjuvantes Imunológicos , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais , Testes de Inibição da Hemaglutinação , Humanos , Imunogenicidade da Vacina , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/prevenção & controle , Esqualeno
11.
Emerg Infect Dis ; 26(12): 3076-3078, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33089772

RESUMO

In March 2020, mild signs and symptoms of coronavirus disease developed in a healthy 33-year-old man in Hong Kong. His first infection did not produce virus neutralizing antibodies. In August, he had asymptomatic reinfection, suggesting that persons without a robust neutralizing antibody response might be at risk for reinfection.


Assuntos
COVID-19/imunologia , Reinfecção/diagnóstico , Formação de Anticorpos/imunologia , Hong Kong , Humanos , Masculino , Pandemias , SARS-CoV-2 , Adulto Jovem
12.
Proc Natl Acad Sci U S A ; 113(16): 4440-5, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27036003

RESUMO

Memory CD8(+)T lymphocytes (CTLs) specific for antigenic peptides derived from internal viral proteins confer broad protection against distinct strains of influenza A virus (IAV). However, immune efficacy can be undermined by the emergence of escape mutants. To determine how T-cell receptor (TCR) composition relates to IAV epitope variability, we used ex vivo peptide-HLA tetramer enrichment and single-cell multiplex analysis to compare TCRs targeted to the largely conserved HLA-A*0201-M158and the hypervariable HLA-B*3501-NP418antigens. The TCRαßs for HLA-B*3501-NP418 (+)CTLs varied among individuals and across IAV strains, indicating that a range of mutated peptides will prime different NP418-specific CTL sets. Conversely, a dominant public TRAV27/TRBV19(+)TCRαß was selected in HLA-A*0201(+)donors responding to M158 This public TCR cross-recognized naturally occurring M158variants complexed with HLA-A*0201. Ternary structures showed that induced-fit molecular mimicry underpins TRAV27/TRBV19(+)TCR specificity for the WT and mutant M158peptides, suggesting the possibility of universal CTL immunity in HLA-A*0201(+)individuals. Combined with the high population frequency of HLA-A*0201, these data potentially explain the relative conservation of M158 Moreover, our results suggest that vaccination strategies aimed at generating broad protection should incorporate variant peptides to elicit cross-reactive responses against other specificities, especially those that may be relatively infrequent among IAV-primed memory CTLs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2 , Imunidade Celular , Vírus da Influenza A/imunologia , Influenza Humana , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Antígenos Virais/imunologia , Cães , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Memória Imunológica/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Masculino , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Vacinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/farmacologia
13.
Proc Natl Acad Sci U S A ; 113(13): 3621-6, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976597

RESUMO

Influenza can cause acute lung injury. Because immune responses often play a role, antivirals may not ensure a successful outcome. To identify pathogenic mechanisms and potential adjunctive therapeutic options, we compared the extent to which avian influenza A/H5N1 virus and seasonal influenza A/H1N1 virus impair alveolar fluid clearance and protein permeability in an in vitro model of acute lung injury, defined the role of virus-induced soluble mediators in these injury effects, and demonstrated that the effects are prevented or reduced by bone marrow-derived multipotent mesenchymal stromal cells. We verified the in vivo relevance of these findings in mice experimentally infected with influenza A/H5N1. We found that, in vitro, the alveolar epithelium's protein permeability and fluid clearance were dysregulated by soluble immune mediators released upon infection with avian (A/Hong Kong/483/97, H5N1) but not seasonal (A/Hong Kong/54/98, H1N1) influenza virus. The reduced alveolar fluid transport associated with down-regulation of sodium and chloride transporters was prevented or reduced by coculture with mesenchymal stromal cells. In vivo, treatment of aged H5N1-infected mice with mesenchymal stromal cells increased their likelihood of survival. We conclude that mesenchymal stromal cells significantly reduce the impairment of alveolar fluid clearance induced by A/H5N1 infection in vitro and prevent or reduce A/H5N1-associated acute lung injury in vivo. This potential adjunctive therapy for severe influenza-induced lung disease warrants rapid clinical investigation.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Humana/complicações , Células-Tronco Mesenquimais/fisiologia , Infecções por Orthomyxoviridae/complicações , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/fisiopatologia , Angiotensina I/biossíntese , Animais , Líquidos Corporais/fisiologia , Técnicas de Cocultura , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Citocinas/biossíntese , Feminino , Fator 7 de Crescimento de Fibroblastos/biossíntese , Humanos , Mediadores da Inflamação/metabolismo , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/terapia , Permeabilidade , Alvéolos Pulmonares/fisiopatologia , ATPase Trocadora de Sódio-Potássio/metabolismo
14.
Clin Infect Dis ; 66(6): 904-912, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29069368

RESUMO

Background: Many health authorities recommend influenza vaccination of older adults to reduce disease burden. We hypothesized that in tropical and subtropical areas with more prolonged influenza seasons, twice-annual influenza vaccination might provide older adults with improved immunity against influenza. Methods: In 2014-2015, Hong Kong experienced a substantial A(H3N2) winter epidemic with a mismatched vaccine. Local authorities procured and administered to older adults the 2015 southern hemisphere influenza vaccine, which included an updated and matching A/Switzerland/9715293/2013(H3N2) strain. We compared immune parameters in pre- and postvaccination sera from older adults ≥75 years of age who received 1 vs 2 influenza vaccines per year. Results: We enrolled 978 older adults with 470 vaccinations for summer 2015 and 827 vaccinations for winter 2015-2016. Recipients of southern hemisphere vaccination had higher geometric mean titers (GMTs) by the hemagglutination inhibition assay against all 3 vaccine strains. When receiving influenza vaccination for the subsequent winter, the southern hemisphere vaccine recipients had higher prevaccination GMTs but lower postvaccination GMTs, compared to those who had not received the southern hemisphere vaccine. Furthermore, cellular immunity was impacted by biannual vaccination, with reduced influenza-specific CD4 T-cell responses in the second season of vaccination. Conclusions: We observed some reductions in immune responses in the twice-annual vaccination group compared with the once-annual vaccination group, in the context of unchanging vaccine strains, while protection was likely to have been improved during the summer and autumn for the twice-annual vaccination group due to the continued circulation of the A/Switzerland/9715293/2013(H3N2) virus.


Assuntos
Anticorpos Antivirais/sangue , Esquemas de Imunização , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Idoso , Idoso de 80 Anos ou mais , Linfócitos T CD4-Positivos/imunologia , Feminino , Hong Kong/epidemiologia , Humanos , Imunidade Celular , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Masculino , Estações do Ano
15.
J Virol ; 91(1)2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795434

RESUMO

Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections. IMPORTANCE: Multiple pattern recognition receptors work in synergy to sense viral RNA or proteins synthesized during influenza replication and mediate host responses for viral control. Well-orchestrated host responses may help to maintain the inflammatory response to minimize tissue damage while inducing an effective adaptive immune response for viral clearance. We identified that CLEC5A, a C-type lectin receptor which has previously been reported to mediate flavivirus-induced inflammatory responses, enhanced induction of proinflammatory cytokines and chemokines in myeloid cells after influenza infections. CLEC5A-deficient mice infected with influenza virus showed reduced inflammation in the lungs and improved survival compared to that of the wild-type mice despite comparable viral loads. The survival difference was more prominent at a lower dose of inoculum. Collectively, our results suggest that dampening CLEC5A-mediated inflammatory responses in myeloid cells reduces immunopathogenesis after influenza infections.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Virus da Influenza A Subtipo H5N1/patogenicidade , Lectinas Tipo C/imunologia , Infecções por Orthomyxoviridae/imunologia , Receptores de Superfície Celular/imunologia , Animais , Anticorpos/farmacologia , Quimiocina CXCL10/genética , Quimiocina CXCL10/imunologia , Regulação da Expressão Gênica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/crescimento & desenvolvimento , Virus da Influenza A Subtipo H5N1/imunologia , Interferon-alfa/genética , Interferon-alfa/imunologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/genética , Lentivirus/genética , Lentivirus/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/virologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/virologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Cultura Primária de Células , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/genética , Análise de Sobrevida , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
16.
J Biol Chem ; 291(47): 24335-24351, 2016 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-27645996

RESUMO

αßT cell receptor (TCR) genetic diversity is outnumbered by the quantity of pathogenic epitopes to be recognized. To provide efficient protective anti-viral immunity, a single TCR ideally needs to cross-react with a multitude of pathogenic epitopes. However, the frequency, extent, and mechanisms of TCR cross-reactivity remain unclear, with conflicting results on anti-viral T cell cross-reactivity observed in humans. Namely, both the presence and lack of T cell cross-reactivity have been reported with HLA-A*02:01-restricted epitopes from the Epstein-Barr and influenza viruses (BMLF-1 and M158, respectively) or with the hepatitis C and influenza viruses (NS31073 and NA231, respectively). Given the high sequence similarity of these paired viral epitopes (56 and 88%, respectively), the ubiquitous nature of the three viruses, and the high frequency of the HLA-A*02:01 allele, we selected these epitopes to establish the extent of T cell cross-reactivity. We combined ex vivo and in vitro functional assays, single-cell αßTCR repertoire sequencing, and structural analysis of these four epitopes in complex with HLA-A*02:01 to determine whether they could lead to heterologous T cell cross-reactivity. Our data show that sequence similarity does not translate to structural mimicry of the paired epitopes in complexes with HLA-A*02:01, resulting in induction of distinct αßTCR repertoires. The differences in epitope architecture might be an obstacle for TCR recognition, explaining the lack of T cell cross-reactivity observed. In conclusion, sequence similarity does not necessarily result in structural mimicry, and despite the need for cross-reactivity, antigen-specific TCR repertoires can remain highly specific.


Assuntos
Epitopos de Linfócito T/imunologia , Antígeno HLA-A2/imunologia , Herpesvirus Humano 4/imunologia , Vírus da Influenza A/imunologia , Fosfoproteínas/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Linfócitos T/imunologia , Transativadores/imunologia , Proteínas da Matriz Viral/imunologia , Epitopos de Linfócito T/genética , Feminino , Antígeno HLA-A2/genética , Herpesvirus Humano 4/genética , Humanos , Vírus da Influenza A/genética , Masculino , Fosfoproteínas/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Transativadores/genética , Proteínas da Matriz Viral/genética
17.
Proc Natl Acad Sci U S A ; 111(15): 5676-81, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24706798

RESUMO

Current influenza vaccines are ineffective against novel viruses and the source or the strain of the next outbreak of influenza is unpredictable; therefore, establishing universal immunity by vaccination to limit the impact of influenza remains a high priority. To meet this challenge, a novel vaccine has been developed using the immunogenic live vaccinia virus as a vaccine vector, expressing multiple H5N1 viral proteins (HA, NA, M1, M2, and NP) together with IL-15 as a molecular adjuvant. Previously, this vaccine demonstrated robust sterile cross-clade protection in mice against H5 influenza viruses, and herein its use has been extended to mediate heterosubtypic immunity toward viruses from both group 1 and 2 HA lineages. The vaccine protected mice against lethal challenge by increasing survival and significantly reducing lung viral loads against the most recent human H7N9, seasonal H3N2, pandemic-2009 H1N1, and highly pathogenic H7N7 influenza A viruses. Influenza-specific antibodies elicited by the vaccine failed to neutralize heterologous viruses and were unable to confer protection by passive transfer. Importantly, heterologous influenza-specific CD4(+) and CD8(+) T-cell responses that were elicited by the vaccine were effectively recalled and amplified following viral challenge in the lungs and periphery. Selective depletion of T-cell subsets in the immunized mice revealed an important role for CD4(+) T cells in heterosubtypic protection, despite low sequence conservation among known MHC-II restricted epitopes across different influenza viruses. This study illustrates the potential utility of our multivalent Wyeth/IL-15/5Flu as a universal influenza vaccine with a correlate of protective immunity that is independent of neutralizing antibodies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Vacinas contra Influenza/imunologia , Interleucina-15/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vaccinia virus/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Feminino , Citometria de Fluxo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H7N7/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Interleucina-15/administração & dosagem , Camundongos , Camundongos Endogâmicos BALB C
18.
J Infect Dis ; 214(8): 1159-63, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27493238

RESUMO

Cross-reactive influenza virus-specific antibody-dependent cellular cytotoxicity (ADCC)-activating antibodies are readily detected in healthy adults. However, little is known about the kinetics of these ADCC responses. We used retrospective serial blood samples from healthy donors to investigate this topic. All donors had ADCC responses against 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) and avian influenza A(H7N9) virus hemagglutinins (HAs) despite being seronegative for these viruses in standard hemagglutination inhibition and microneutralization serological assays. A(H1N1)pdm09 exposure did not boost ADCC responses specific for H7 HA antigens. H7 HA ADCC responses were variable longitudinally within donors, suggesting that these cross-reactive antibodies are unstable. We found no correlation between ADCC responses to the H7 HA and either influenza virus-specific immunoglobulin G1 concentration or age.


Assuntos
Anticorpos Antivirais/imunologia , Formação de Anticorpos/imunologia , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Reações Cruzadas/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Animais , Aves , Testes de Inibição da Hemaglutinação/métodos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunoglobulina G/imunologia , Influenza Aviária/imunologia , Estudos Longitudinais , Estudos Retrospectivos
19.
J Virol ; 89(21): 10762-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26269186

RESUMO

UNLABELLED: Seasonal influenza epidemics and occasional pandemics threaten public health worldwide. New alternative strategies for generating recombinant viruses with vaccine potential are needed. Interestingly, influenza viruses circulating in different hosts have been found to have distinct codon usage patterns, which may reflect host adaptation. We therefore hypothesized that it is possible to make a human seasonal influenza virus that is specifically attenuated in human cells but not in eggs by converting its codon usage so that it is similar to that observed from avian influenza viruses. This approach might help to generate human live attenuated viruses without affecting their yield in eggs. To test this hypothesis, over 300 silent mutations were introduced into the genome of a seasonal H1N1 influenza virus. The resultant mutant was significantly attenuated in mammalian cells and mice, yet it grew well in embryonated eggs. A single dose of intranasal vaccination induced potent innate, humoral, and cellular immune responses, and the mutant could protect mice against homologous and heterologous viral challenges. The attenuated mutant could also be used as a vaccine master donor strain by introducing hemagglutinin and neuraminidase genes derived from other strains. Thus, our approach is a successful strategy to generate attenuated viruses for future application as vaccines. IMPORTANCE: Vaccination has been one of the best protective measures in combating influenza virus infection. Current licensed influenza vaccines and their production have various limitations. Our virus attenuation strategy makes use of the codon usage biases of human and avian influenza viruses to generate a human-derived influenza virus that is attenuated in mammalian hosts. This method, however, does not affect virus replication in eggs. This makes the resultant mutants highly compatible with existing egg-based vaccine production pipelines. The viral proteins generated from the codon bias mutants are identical to the wild-type viral proteins. In addition, our massive genome-wide mutational approach further minimizes the concern over reverse mutations. The potential use of this kind of codon bias mutant as a master donor strain to generate other live attenuated viruses is also demonstrated. These findings put forward a promising live attenuated influenza vaccine generation strategy to control influenza.


Assuntos
Códon/genética , Engenharia Genética/métodos , Vírus da Influenza A Subtipo H1N1/genética , Vacinas contra Influenza/biossíntese , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Animais , Cães , Ovos/virologia , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Camundongos , Mutagênese
20.
Proc Natl Acad Sci U S A ; 110(14): 5570-5, 2013 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-23493558

RESUMO

A reverse-genetics approach has been used to probe the mechanism underlying immune escape for influenza A virus-specific CD8(+) T cells responding to the immunodominant D(b)NP366 epitope. Engineered viruses with a substitution at a critical residue (position 6, P6M) all evaded recognition by WT D(b)NP366-specific CD8(+) T cells, but only the NPM6I and NPM6T mutants altered the topography of a key residue (His155) in the MHC class I binding site. Following infection with the engineered NPM6I and NPM6T influenza viruses, both mutations were associated with a substantial "hole" in the naïve T-cell receptor repertoire, characterized by very limited T-cell receptor diversity and minimal primary responses to the NPM6I and NPM6T epitopes. Surprisingly, following respiratory challenge with a serologically distinct influenza virus carrying the same mutation, preemptive immunization against these escape variants led to the generation of secondary CD8(+) T-cell responses that were comparable in magnitude to those found for the WT NP epitope. Consequently, it might be possible to generate broadly protective T-cell immunity against commonly occurring virus escape mutants. If this is generally true for RNA viruses (like HIV, hepatitis C virus, and influenza) that show high mutation rates, priming against predicted mutants before an initial encounter could function to prevent the emergence of escape variants in infected hosts. That process could be a step toward preserving immune control of particularly persistent RNA viruses and may be worth considering for future vaccine strategies.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Evasão da Resposta Imune/genética , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Modelos Moleculares , Microglobulina beta-2/química , Animais , Sítios de Ligação/genética , Linfócitos T CD8-Positivos/virologia , Cristalização , Epitopos de Linfócito T/genética , Citometria de Fluxo , Genes MHC Classe I/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Microglobulina beta-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA