Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(13): 19904-19916, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367105

RESUMO

The Sargassum phenomenon is currently affecting the Caribbean in several ways; one of them is the increase of greenhouse gases due to the decomposition process of this macroalgae; these processes also produce large amounts of pollutant leachates, in which several microbial communities are involved. To understand these processes, we conducted a 150-day study on the Sargassum spp environmental degradation under outdoor conditions, during which leachates were collected at 0, 30, 90, and 150 days. Subsequently, a metagenomic study of the microorganisms found in the leachates was carried out, in which changes in the microbial community were observed over time. The results showed that anaerobic bacterial genera such as Thermofilum and Methanopyrus were predominant at the beginning of this study (0 and 30 days), degrading sugars of sulfur polymers such as fucoidan, but throughout the experiment, the microbial communities were changed also, with the genera Fischerella and Dolichospermum being the most predominant at days 90 and 150, respectively. A principal component analysis (PCA) indicated, with 94% variance, that genera were positively correlated at 30 and 90 days, but not with initial populations, indicating changes in community structure due to sargassum degradation were present. Finally, at 150 days, the leachate volume decreased by almost 50% and there was a higher abundance of the genera Desulfobacter and Dolichospemum. This is the first work carried out to understand the degradation of Sargassum spp, which will serve, together with other works, to understand and provide a solution to this serious environmental problem in the Caribbean.


Assuntos
Microbiota , Sargassum , Região do Caribe , Bactérias Anaeróbias , México
2.
Plants (Basel) ; 12(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37299048

RESUMO

Induced systemic resistance (ISR) is a mechanism involved in the plant defense response against pathogens. Certain members of the Bacillus genus are able to promote the ISR by maintaining a healthy photosynthetic apparatus, which prepares the plant for future stress situations. The goal of the present study was to analyze the effect of the inoculation of Bacillus on the expression of genes involved in plant responses to pathogens, as a part of the ISR, during the interaction of Capsicum chinense infected with PepGMV. The effects of the inoculation of the Bacillus strains in pepper plants infected with PepGMV were evaluated by observing the accumulation of viral DNA and the visible symptoms of pepper plants during a time-course experiment in greenhouse and in in vitro experiments. The relative expression of the defense genes CcNPR1, CcPR10, and CcCOI1 were also evaluated. The results showed that the plants inoculated with Bacillus subtilis K47, Bacillus cereus K46, and Bacillus sp. M9 had a reduction in the PepGMV viral titer, and the symptoms in these plants were less severe compared to the plants infected with PepGMV and non-inoculated with Bacillus. Additionally, an increase in the transcript levels of CcNPR1, CcPR10, and CcCOI1 was observed in plants inoculated with Bacillus strains. Our results suggest that the inoculation of Bacillus strains interferes with the viral replication, through the increase in the transcription of pathogenesis-related genes, which is reflected in a lowered plant symptomatology and an improved yield in the greenhouse, regardless of PepGMV infection status.

3.
Pathogens ; 10(4)2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33920312

RESUMO

The aim of this study was to evaluate the effect of inoculation with Bacillus spp. isolates on the photosynthetic apparatus of Capsicum chinense plants infected with PepGMV. In vitro and greenhouse experiments were performed to evaluate whether the inoculation improved plants' performance through the increase in photosynthetic efficiency to control PepGMV. The results showed that despite PepGMV infection, the plants inoculated with some isolates of Bacillus spp. had a healthy photosynthetic mechanism, as the photochemical parameters and gas exchange increased. The maximum photochemical quantum yield of PSII (Fv/Fm) of plants with PepGMV and inoculated with Bacillus isolates (M9, K46, and K47) increased (7.85, 7.09, and 7.77%, respectively) with respect to uninoculated controls. In inoculated plants, the CO2 assimilation rate increased and the transpiration rate decreased, therefore indicating an increased water use efficiency. This effect was reflected by the less severe symptoms caused by PepGMV in the plants obtained from seeds inoculated with different Bacillus spp. Plants inoculated with K47 isolates showed an increase in fruit yield and quality. This study suggests that it is possible to protect, at the greenhouse level, C. chinense plants from PepGMV through selected rhizobacteria inoculation.

4.
Plants (Basel) ; 10(11)2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834628

RESUMO

Sorghum (Sorghum bicolor (L.) Moench) is cultivated in regions with frequent drought periods and high temperatures, conditions that have intensified in the last decades. One of the most important photosynthetic components, sensible to hydric stress, is maximum quantum yield for photosystem II (PSII, or Fv/Fm). The objective of the present study was to identify sorghum genotypes with tolerance to hydric and heat stress. The treatments were hydric status (hydric stress or non-hydric stress (irrigation)), the plant's developmental stages (pre or post-anthesis), and six genotypes. The response variables were Fv/Fm; photosynthetic rate (PN); stomatal conductance (gs); transpiration rate (E); relative water content (RWC); damage to cell membrane (DCM) at temperatures of 40 and 45 °C; and agronomic variables. The experiment was conducted in pots in open sky in Marín, N.L., in the dry and hot northeast Mexico. The treatment design was a split-split plot design, with three factors. Hydric stress diminished the functioning of the photosynthetic apparatus by 63%, due to damage caused to PSII. Pre-anthesis was the most vulnerable stage to hydric stress as it decreased the weight of grains per panicle (85%), number of grains per panicle (69%), and weight of 100 grains (46%). Genotypes LER 1 and LER 2 were identified as tolerant to hydric stress, as they had lower damage to PSII; LER 1 and LEB 2 for their superior RWC; and LER 1 as a thermo tolerant genotype, due to its lower DCM at 45 °C. It was concluded that LER 1 could have the potential for both hydric and heat stress tolerance in the arid northeast Mexico.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA