Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Sci Total Environ ; 856(Pt 2): 159225, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36206898

RESUMO

This paper reports data from a southern-Italy reservoir (Lake Occhito) characterized by a strong riverborne sediment transport. Main hydrochemical, trophic, and nutrient variables were measured (over a twelve-month period) in both lake and tributaries. Lacustrine sediments were subjected to mineralogical characterization and to phosphorus fractioning, while a 6-day long batch experiment was carried out to evaluate the lake sediment orthophosphate adsorption capacity. A set of algal growth potential tests was also undertaken on the lake and its tributaries. Results highlight the presence of a strong gradient in nutrient availability among the inflows. Most of the nutrient loads were from the main tributary (20.3 t P a-1, ~83 %), that showed the highest trophic potential (average: 56.8 mg L-1) and was nitrogen/phosphorus co-limited. The other inflows were phosphorus limited and characterized by a higher sediment transport. The lake showed the lowest nutrient concentrations (average total phosphorus: 21 µg P L-1) and was strongly phosphorus limited. Clays were the principal minerals in the lake sediments (~51 %), while the main phosphorus fraction was apatite (~78 %). The batch experiment demonstrated the capability of the lake sediments to reduce orthophosphate concentrations in phosphorus-rich waters (initial orthophosphate: 320 µg P L-1; ~80 % reduction). The lake sediment orthophosphate kinetics of abatement was similar to that of a commercially available phosphorus sorbent (lanthanum modified bentonite), although the stability of phosphorus binding was higher for the commercial product. Theoretical average in-lake total phosphorus, chlorophyll-a, and transparency values, estimated through Vollenweider models, were approximately double of the average values measured in the lake. Therefore, the massive presence of riverborne clay sediments seems to markedly reduce the in-lake orthophosphate concentrations (and light penetration), inducing an overall lowering of the lake trophic state, as if the lake ecosystem were permanently subjected to a geo-engineering phosphorus sorbent treatment.


Assuntos
Sedimentos Geológicos , Poluentes Químicos da Água , Argila , Sedimentos Geológicos/química , Fosfatos , Adsorção , Ecossistema , Lagos/química , Fósforo/química , Poluentes Químicos da Água/análise , Eutrofização
2.
Environ Toxicol Chem ; 41(10): 2404-2419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781318

RESUMO

The great concern over the environmental impact of wastewaters has led to the designing of advanced treatment processes to upgrade conventional treatment plants and achieve a significant reduction of contaminants in receiving waters. In the present study we combined chemical and ecotoxicological analyses, aiming to evaluate the reduction of toxicity effects associated with the removal of micropollutants and to define the contribution of the detected compounds to the overall toxicity of the mixtures in a series of wastewater effluents collected from a secondary treatment (OUT 2) and from a tertiary activated carbon treatment (OUT 3) plant. The target compounds were selected after a screening procedure among pharmaceuticals, musk fragrances, and trace metals. The classical algal growth inhibition test was conducted on the original effluent samples and on different fractions obtained by solid-phase extraction (SPE) treatment. A good accordance was found between the removal of toxicity (30%-80%) and organic compounds (70%-80%) after the tertiary treatment, suggesting its high efficiency to improve the wastewater quality. The discrepancy between the contribution to the overall toxicity of the nonadsorbable compounds (i.e., inorganic or very polar organic compounds) as experimentally measured by the SPE bioassays (18%-76%) and calculated by the concentration addition approach (>97%) could be mitigated by including the bioavailability correction in metal-toxicity modeling of wastewater mixtures. For the organic compounds, the toxic equivalency method enabled us to quantify the portion of toxicity explained by the detected chemicals in both OUT 2 (82%-104%) and OUT 3 (5%-57%), validating the selection of the target molecules. The applied integrating approach could be implemented by the inclusion of both additional target chemicals and toxicity endpoints. Environ Toxicol Chem 2022;41:2404-2419. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Carvão Vegetal , Ecotoxicologia , Compostos Orgânicos , Preparações Farmacêuticas , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Toxics ; 9(9)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34564348

RESUMO

Riverine sediments are important sites of mercury methylation and benthic invertebrates may be indicators of Hg exposure to higher organisms. From 2014 to 2018, sediments and invertebrates were collected along a mercury gradient in the Toce River (Northern Italy) and analyzed for THg and MeHg. Concentrations in invertebrates, separated according to taxon and to Functional Feeding Group, ranged from 20 to 253 µg kg-1 dry weight (d.w.) for THg, increasing from grazers (Leuctra, Baetis, Serratella) to predators (Perla). MeHg ranged from 3 to 88 µg kg-1 d.w. in biota, representing 6-53% of THg, while in sediments it was mostly below LOD (0.7 µg kg-1), accounting for ≤3.8% of THg. The Biota-Sediment Accumulation Factor (BSAF, ranging 0.2-4.6) showed an inverse relation to exposure concentrations (THg in sediments, ranging 0.014-0.403 µg kg-1 d.w.) and to organic carbon. THg in invertebrates (up to 73 µg kg-1 wet weight), i.e., at the basal levels of the aquatic trophic chain, exceeded the European Environmental Quality Standard for biota (20 µg kg-1 w.w.), posing potential risks for top predators. Concentrations in adult insects were close to those in aquatic stages, proving active mercury transfer even to terrestrial food chains.

4.
MethodsX ; 8: 101581, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004215

RESUMO

We developed and compared two analytical methods for determination of MeHg in freshwater biota and sediments, by: I) simplified static headspace GC-MS using internal standard (IS) isotope dilution quantification, after microwave acid digestion and aqueous phase NaBEt4 ethylation; II) Automated Mercury Analyzer, after double toluene extraction followed by back-extraction with L-cystein. The performance was evaluated by analysis of certified reference materials. For biota, mean recovery was 100 ± 2% and relative standard deviation (RSD) ≤ 6.8% for method I, and mean recovery was 98 ± 7% and RSD ≤13% for method II. For sediments, recovery of 94.5% and RSD of 8.8% were obtained with method I, and recovery of 90.3% and RSD of 9.4% with method II. Limits of detection (LOD) were 0.7 µg kg-1 and 6 µg kg-1, respectively. Both techniques were tested for MeHg analysis in freshwater invertebrates, fish and sediments, covering a large range of MeHg values (1.9-670 µg kg-1 d.w.). • Both protocols proved to be suitable for MeHg analysis in complex environmental matrices, even if, for method II, interferences in the extraction phase and limited sensitivity may hinder sediment analysis. • Passing-Bablock regression revealed a slight disproportion between methods, with line slope = 1.058 (95% CI ranging from 1.001 to 1.090).

5.
Sci Total Environ ; 782: 146766, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33839650

RESUMO

River sediments generally act as a sink for trace elements but, when resuspended, they contribute to long-term downstream transport of contamination, which may finally reach the marine environment. This study analyzed these processes in a complex aquatic system that includes a contaminated tributary, the Lambro River (Northern Italy) and its recipient and main Italian watercourse, the Po River, with the prodelta in the Adriatic Sea. The study was conducted from a historical perspective which, covering the last 50 years, examined the main driving events such as the inputs of contaminants, the construction of WWTPs and the evolution of environmental legislation. The time trend of trace element contamination was analyzed in a sediment core collected in the Lambro River and dated 1962-2011. The highest enrichments were found for Hg, Zn, Cu, Pb and Cd, which showed similar trends, with EF maxima in the '60s-'90s (172, 56, 40, 28 and 21, respectively), following industrial and urban development, and a general decreasing pattern after the late '90s. Only in the 2000s the ecological risk associated with metal contamination showed mean PEC Quotients stably below 1. The results of a literature survey on sedimentary trace elements in the Po River and the prodelta for the last 50 years were then compared to the Lambro sediment core. A significant contribution to Cu, Zn, Pb, Hg and Cd contamination was proved to derive from Lambro sediment transport. In the prodelta, increasing Ni and Cr concentrations were also evidenced, likely as a result of enhanced soil erosion in the Po basin. This study highlights the key role of WWTPs, of lower-impact industrial processes and of environmental legislation in reducing contaminant inputs. It also emphasizes the active contribution of riverine sediment-bound contamination to long-distance marine sediment quality.

6.
Environ Sci Pollut Res Int ; 28(28): 38193-38208, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33728603

RESUMO

Lake tributaries collect contaminants from the watershed, which may accumulate in lake sediments over time and may be removed through the outlets. DDx, PCB, PAH, PBDE, and trace element (Hg, As, Cd, Ni, Cu, Pb) contamination was analyzed over 2001-2018 period in sediments of the 5 main tributaries and of the outlet of Lake Maggiore (Northern Italy). Sediment cores were collected in two points of the lake, covering 1995-2017 period. Concentrations were compared to Sediment Quality Guidelines (PECs), potential sources and drivers (land use, population numbers, industrial activities, hydrology) were analyzed, and temporal trends were calculated (Mann-Kendall test). PCB, PBDE, Pb, Cd, and Hg contamination derives mainly from heavy urbanization and industry. Cu and Pb show a temporal decreasing trend in the basin, likely as result of improved wastewater treatments and change in use. A recent PAH increase in the whole lake may derive from a single point source. A legacy DDx and Hg industrial pollution is still present, due to high persistence in sediments. Values of DDx, Hg, Pb, and Cu above the PECs in lake sediments and/or in the outlet show potential risk for aquatic organisms. Results highlight the key role of tributaries in driving contamination from the watershed to the lake through sediment transport.


Assuntos
Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Itália , Lagos , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 646: 37-48, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30044994

RESUMO

Reconstructions of past fluvial contamination through the analysis of deep sediment cores are rarely reported in literature. We examined the phosphorus fractions in a deep (2.6 m) sediment core of the Lambro River downstream of the highly anthropized Milan metropolitan area and upstream of the Po river the main Italian watercourse. The core covered the period 1962-2011. Total phosphorus concentrations resulted typical of a strongly impacted environment (4788 mg P kg DW-1 on average) with the highest concentrations related to the 1960s (7639 mg P kg DW-1) reflecting the period of maximum demographic growth. Afterwards, phosphorus concentrations decreased thanks to the infrastructural and legislative initiatives carried out in the 1980s and the 1990s to reduce the impact of urban point sources. Subsequently, total phosphorus concentrations stabilized on values around 3000 mg P kg DW-1 and did not diminish further, even after the second phase of infrastructural interventions carried out in the second half of the 2000s. This was related to the increasing relative impact of the combined sewer overflows in the sewage system and to the strong phosphorus enrichment of the basin. Most of the phosphorus was in inorganic forms (86% of the total) that have been identified as the final target of the domestic effluent inputs. The contribution of organic phosphorus was lower but constant over the period 1962-2011. It likely originated from the agricultural areas located south of the city of Milan. In conclusion, this study underlines how past interventions have been effective in reducing urban point sources but it also highlights the current difficulties related to the growing importance of other sources influenced by the surface runoff (i.e., combined sewer overflows and agriculture). The study also emphasizes a general phosphorus enrichment of the Lambro River basin and its impact on the Po River and the Adriatic Sea.


Assuntos
Monitoramento Ambiental , Fósforo/análise , Poluentes Químicos da Água/análise , Cidades , Sedimentos Geológicos , Itália , Rios , Poluição Química da Água/estatística & dados numéricos
8.
Toxicon ; 90: 82-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108147

RESUMO

In this study, we investigated the relationships between microcystin (MCs) concentrations and the biovolumes of Planktothrix rubescens (BPr) in 2 natural lakes (Pusiano and Garda) and 2 artificially dammed reservoirs (Occhito and Ledro) in Italy. In all the considered water bodies, P. rubescens was the dominant cyanobacterium. All the lakes were characterized by significant relationships between MCs and BPr, with limited variability in the MC quota (the content of MCs per unit of biovolume) within each water body compared with the variability between sites. The results were consistent with the development of specific MC-genotypes, with moderate seasonal and spatial changes in the proportion between toxic and non-toxic strains. The MC cell quota obtained in our work (ECQ, Environmental Cell Quota) were in the same range of values computed on the basis of analyses made on environmental samples dominated by P. rubescens or Planktothrix agardhii, and on isolates of the same two species (<1 to over 10 µg mm(-3)). Besides the usual ordinary least square regressions, models have been evaluated by using quantile regression, a method that allows estimating the conditional median or other quantiles of the response variable. We showed that the use of quantile regressions has different advantages, which included the computation of MC quota based on the whole range of available data, the robustness against outliers, and the ability to estimate models also in cases where there is no or only weak relationships. The highest ECQ values estimated from 95% quantile regressions in specific water bodies might be used to estimate the worst-case MC concentrations from algal abundances. Nevertheless, it was stressed that a realistic assessment of toxicity and potential adverse health effects necessarily should take into account the toxicity potential of the more abundant MC-congeners produced by specific cyanobacteria populations.


Assuntos
Cianobactérias/isolamento & purificação , Microcistinas/análise , Microbiologia da Água , Purificação da Água/métodos , Cianobactérias/química , Água Doce
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA