Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 46(6): 1357-1360, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33720186

RESUMO

Ptychography is a promising phase retrieval technique for label-free quantitative phase imaging. Recent advances in phase retrieval algorithms witnessed the development of spectral methods to accelerate gradient descent algorithms. Using spectral initializations on experimental data, for the first time, we report three times faster ptychographic reconstructions than with a standard gradient descent algorithm and improved resilience to noise. Coming at no additional computational cost compared to gradient-descent-based algorithms, spectral methods have the potential to be implemented in large-scale iterative ptychographic algorithms.

2.
Appl Opt ; 58(34): G256-G275, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31873509

RESUMO

Imaging with THz radiation has proved an important tool for both fundamental science and industrial use. Here we review a class of THz imaging implementations, named coherent lensless imaging, that reconstruct the coherent response of arbitrary samples with a minimized experimental setup based only on a coherent source and a camera. After discussing the appropriate sources and detectors to perform them, we detail the fundamental principles and implementations of THz digital holography and phase retrieval. These techniques owe a lot to imaging with different wavelengths, yet innovative concepts are also being developed in the THz range and are ready to be applied in other spectral ranges. This makes our review useful for both the THz and imaging communities, and we hope it will foster their interaction.

3.
Opt Lett ; 43(3): 543-546, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29400836

RESUMO

We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

4.
Opt Express ; 25(10): 11038-11047, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788789

RESUMO

We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference. Holographic reconstructions after the application of the method show a considerable improvement compared to standard reconstructions exclusively based on Fourier transform phase retrieval.

5.
Sensors (Basel) ; 16(2): 221, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26861341

RESUMO

In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 µm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 µm, 118.8 µm, and 393.6 µm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.


Assuntos
Holografia , Radiação Terahertz , Desenho de Equipamento , Lasers , Luz , Razão Sinal-Ruído , Silício/química , Compostos de Vanádio/química
6.
Sci Adv ; 10(3): eadi3442, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232161

RESUMO

Imaging at depth in opaque materials has long been a challenge. Recently, wavefront shaping has enabled notable advance for deep imaging. Nevertheless, most noninvasive wavefront-shaping methods require cameras, lack the sensitivity for deep imaging under weak optical signals, or can only focus on a single "guidestar." Here, we retrieve the transmission matrix (TM) noninvasively using two-photon fluorescence exploiting a single-pixel detection combined with a computational framework, allowing to achieve single-target focus on multiple guidestars spread beyond the memory effect range. In addition, if we assume that memory effect correlations exist in the TM, we are able to substantially reduce the number of measurements needed.

7.
Nat Nanotechnol ; 18(10): 1185-1194, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37591934

RESUMO

Understanding (de)lithiation heterogeneities in battery materials is key to ensure optimal electrochemical performance. However, this remains challenging due to the three-dimensional morphology of electrode particles, the involvement of both solid- and liquid-phase reactants and a range of relevant timescales (seconds to hours). Here we overcome this problem and demonstrate the use of confocal microscopy for the simultaneous three-dimensional operando measurement of lithium-ion dynamics in individual agglomerate particles, and the electrolyte in batteries. We examine two technologically important cathode materials: LixCoO2 and LixNi0.8Mn0.1Co0.1O2. The surface-to-core transport velocity of Li-phase fronts and volume changes are captured as a function of cycling rate. Additionally, we visualize heterogeneities in the bulk and at agglomerate surfaces during cycling, and image microscopic liquid electrolyte concentration gradients. We discover that surface-limited reactions and intra-agglomerate competing rates control (de)lithiation and structural heterogeneities in agglomerate-based electrodes. Importantly, the conditions under which optical imaging can be performed inside the complex environments of battery electrodes are outlined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA