Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Med Chem ; 47(25): 6392-400, 2004 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-15566308

RESUMO

New "molecular tongs" based on naphthalene and quinoline scaffolds linked to two peptidic strands were synthesized. They were designed to prevent dimerization of HIV-1 protease by targeting the antiparallel beta-sheet involving N- and C-termini of each monomer. Compared to "molecular tongs" previously described (Bouras, A.; Boggetto, N.; Benatalah, Z.; de Rosny, E.; Sicsic, S.; Reboux-Ravaud, M. J. Med. Chem. 1999, 42, 957-962), two main different structural features were introduced: positively charged quinoline as a new scaffold and two peptidic strands displaying different sequences. Seventeen new "molecular tongs" with dipeptidic or tripeptidic strands were synthesized. These molecules were assayed on HIV-1 protease using the Zhang kinetic technique. Eleven molecules behaved as pure dimerization inhibitors, mostly at the submicromolar range. Compared to a naphthalene scaffold, the quinoline one was shown in several cases to favor dimerization inhibition. The simplified hydrophobic Val-Leu-Val-OMe strand was confirmed as particularly favorable. The C-terminal analogue strand Thr-Leu-Asn-OMe was shown to be the best one for inducing dimerization inhibition (K(id) of 80 nM for compound 30). The mechanism of inhibition was ascertained using ANS binding and gel filtration. Experimental results are in agreement with the dissociation of the HIV-1 protease dimeric form in the presence of the synthesized molecular tongs.


Assuntos
Protease de HIV/química , HIV-1 , Naftalenos/síntese química , Oligopeptídeos/síntese química , Quinolinas/síntese química , Dimerização , Estrutura Molecular , Naftalenos/química , Oligopeptídeos/química , Estrutura Secundária de Proteína , Quinolinas/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA