Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 25: e43404, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598811

RESUMO

Although health care delivery is becoming increasingly digitized, driven by the pursuit of improved access, equity, efficiency, and effectiveness, progress does not appear to be equally distributed across therapeutic areas. Oncology is renowned for leading innovation in research and in care; digital pathology, digital radiology, real-world data, next-generation sequencing, patient-reported outcomes, and precision approaches driven by complex data and biomarkers are hallmarks of the field. However, remote patient monitoring, decentralized approaches to care and research, "hospital at home," and machine learning techniques have yet to be broadly deployed to improve cancer care. In response, the Digital Medicine Society and Moffitt Cancer Center convened a multistakeholder roundtable discussion to bring together leading experts in cancer care and digital innovation. This viewpoint highlights the findings from these discussions, in which experts agreed that digital innovation is lagging in oncology relative to other therapeutic areas. It reports that this lag is most likely attributed to poor articulation of the challenges in cancer care and research best suited to digital solutions, lack of incentives and support, and missing standardized infrastructure to implement digital innovations. It concludes with suggestions for actions needed to bring the promise of digitization to cancer care to improve lives.


Assuntos
Atenção à Saúde , Neoplasias , Humanos , Atenção à Saúde/métodos , Neoplasias/terapia , Medidas de Resultados Relatados pelo Paciente
2.
ACS Appl Mater Interfaces ; 1(2): 301-10, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20353217

RESUMO

Electrochemical (EC) quartz crystal microbalance with dissipation monitoring (ECQCM-D) is a new and powerful technique for the in situ study of adsorption phenomena, e.g., as a function of the potential of the substrate. When titanium (Ti) is employed as the substrate, its oxidation behavior needs to be taken into account. Ti is always covered with a native oxide layer that can grow by, e.g., thermal oxidation or under anodic polarization. For biomolecular adsorption studies on oxidized Ti under applied potential, a stable oxide layer is desired in order to be able to distinguish the adsorption phenomena and the oxide growth. Therefore, the oxidation of thermally evaporated Ti films was investigated in phosphate-buffered saline by means of ECQCM-D, using a specially designed EC flow cell. Upon stepping the potential applied to Ti up to 2.6 V vs standard hydrogen electrode (SHE), a fast increase of the mass was observed initially for each potential step, evolving slowly to an asymptotic mass change after several hours. The oxide layer thickness increased as a quasi-linear function of the oxidation potential for potentials up to 1.8 V vs SHE. The growth rate of the oxide was around 2.5-3 nm/V. No changes in the dissipation shift were observed for potentials up to 1.8 V vs SHE. The composition of the oxide layer was analyzed by X-ray photoelectron spectroscopy (XPS). It was mainly composed of TiO(2), with a small percentage of suboxides (TiO and Ti(2)O(3)) primarily at the inner metal/oxide interface. The amount of TiO(2) increased, and that of TiO and Ti(2)O(3) decreased, with increasing oxidation potential. For each oxidation potential, the calculated thickness obtained from ECQCM-D correlated well with the thickness obtained by XPS depth profiling. A procedure to prepare Ti samples with a stable oxide layer was successfully established for investigations on the influence of an electric field on the adsorption of biomolecules. As such, the effect of an applied potential on the adsorption behavior of lysozyme on oxidized Ti was investigated. It was observed that the adsorption of lysozyme on oxidized Ti was not influenced by the applied potential.


Assuntos
Técnicas Eletroquímicas/métodos , Muramidase/química , Óxidos/química , Quartzo/química , Titânio/química , Adsorção , Oxirredução , Espectroscopia Fotoeletrônica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA