Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Med Internet Res ; 24(4): e29455, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442211

RESUMO

BACKGROUND: Currently, selection of patients for sequential versus concurrent chemotherapy and radiation regimens lacks evidentiary support and it is based on locally optimal decisions for each step. OBJECTIVE: We aim to optimize the multistep treatment of patients with head and neck cancer and predict multiple patient survival and toxicity outcomes, and we develop, apply, and evaluate a first application of deep Q-learning (DQL) and simulation to this problem. METHODS: The treatment decision DQL digital twin and the patient's digital twin were created, trained, and evaluated on a data set of 536 patients with oropharyngeal squamous cell carcinoma with the goal of, respectively, determining the optimal treatment decisions with respect to survival and toxicity metrics and predicting the outcomes of the optimal treatment on the patient. Of the data set of 536 patients, the models were trained on a subset of 402 (75%) patients (split randomly) and evaluated on a separate set of 134 (25%) patients. Training and evaluation of the digital twin dyad was completed in August 2020. The data set includes 3-step sequential treatment decisions and complete relevant history of the patient cohort treated at MD Anderson Cancer Center between 2005 and 2013, with radiomics analysis performed for the segmented primary tumor volumes. RESULTS: On the test set, we found mean 87.35% (SD 11.15%) and median 90.85% (IQR 13.56%) accuracies in treatment outcome prediction, matching the clinicians' outcomes and improving the (predicted) survival rate by +3.73% (95% CI -0.75% to 8.96%) and the dysphagia rate by +0.75% (95% CI -4.48% to 6.72%) when following DQL treatment decisions. CONCLUSIONS: Given the prediction accuracy and predicted improvement regarding the medically relevant outcomes yielded by this approach, this digital twin dyad of the patient-physician dynamic treatment problem has the potential of aiding physicians in determining the optimal course of treatment and in assessing its outcomes.


Assuntos
Neoplasias de Cabeça e Pescoço , Médicos , Humanos , Seleção de Pacientes , Prognóstico , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço
2.
Cancer ; 127(14): 2453-2464, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33788956

RESUMO

BACKGROUND: The goal of this study was to comprehensively investigate the association of chemotherapy with trajectories of acute symptom development and late symptom recovery in patients with oropharyngeal cancer (OPC) by comparing symptom burden between induction chemotherapy followed by concurrent chemoradiotherapy (ICRT), concurrent chemo-radiotherapy (CRT), or radiotherapy (RT) alone. METHODS: Among a registry of 717 patients with OPC, the 28-item patient-reported MD Anderson Symptom Inventory-Head and Neck Module (MDASI-HN) symptoms were collected prospectively at baseline, weekly during RT, and 1.5, 3 to 6, 12, and 18 to 24 months after RT. The effect of the treatment regimen (ICRT, CRT, and RT alone) was examined with mixed-model analyses for the acute and late period. In the CRT cohort, the chemotherapy agent relationship with symptoms was investigated. RESULTS: Chemoradiation (ICRT/CRT) compared with RT alone resulted in significantly higher acute symptom scores in the majority of MDASI-HN symptoms (ie, 21 out of 28). No late symptom differences between treatment with or without chemotherapy were observed that were not attributable to ICRT. Nausea was lower for CRT with carboplatin than for CRT with cisplatin; cetuximab was associated with particularly higher scores for acute and late skin, mucositis, and 6 other symptoms. The addition of ICRT compared with CRT or RT alone was associated with a significant increase in numbness and shortness of breath. CONCLUSION: The addition of chemotherapy to definitive RT for OPC patients was associated with significantly worse acute symptom outcomes compared with RT alone, which seems to attenuate in the late posttreatment period. Moreover, induction chemotherapy was specifically associated with worse numbness and shortness of breath during and after treatment. LAY SUMMARY: Chemotherapy is frequently used in addition to radiotherapy cancer treatment, yet the (added) effect on treatment-induced over time is not comprehensively investigated This study shows that chemotherapy adds to the symptom severity reported by patients, especially during treatment.


Assuntos
Neoplasias Orofaríngeas , Cetuximab/uso terapêutico , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Humanos , Neoplasias Orofaríngeas/etiologia , Medidas de Resultados Relatados pelo Paciente , Sistema de Registros
3.
Comput Methods Programs Biomed ; 244: 107939, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008678

RESUMO

BACKGROUND AND OBJECTIVE: Recently, deep learning (DL) algorithms showed to be promising in predicting outcomes such as distant metastasis-free survival (DMFS) and overall survival (OS) using pre-treatment imaging in head and neck cancer. Gross Tumor Volume of the primary tumor (GTVp) segmentation is used as an additional channel in the input to DL algorithms to improve model performance. However, the binary segmentation mask of the GTVp directs the focus of the network to the defined tumor region only and uniformly. DL models trained for tumor segmentation have also been used to generate predicted tumor probability maps (TPM) where each pixel value corresponds to the degree of certainty of that pixel to be classified as tumor. The aim of this study was to explore the effect of using TPM as an extra input channel of CT- and PET-based DL prediction models for oropharyngeal cancer (OPC) patients in terms of local control (LC), regional control (RC), DMFS and OS. METHODS: We included 399 OPC patients from our institute that were treated with definitive (chemo)radiation. For each patient, CT and PET scans and GTVp contours, used for radiotherapy treatment planning, were collected. We first trained a previously developed 2.5D DL framework for tumor probability prediction by 5-fold cross validation using 131 patients. Then, a 3D ResNet18 was trained for outcome prediction using the 3D TPM as one of the possible inputs. The endpoints were LC, RC, DMFS, and OS. We performed 3-fold cross validation on 168 patients for each endpoint using different combinations of image modalities as input. The final prediction in the test set (100) was obtained by averaging the predictions of the 3-fold models. The C-index was used to evaluate the discriminative performance of the models. RESULTS: The models trained replacing the GTVp contours with the TPM achieved the highest C-indexes for LC (0.74) and RC (0.60) prediction. For OS, using the TPM or the GTVp as additional image modality resulted in comparable C-indexes (0.72 and 0.74). CONCLUSIONS: Adding predicted TPMs instead of GTVp contours as an additional input channel for DL-based outcome prediction models improved model performance for LC and RC.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias Orofaríngeas/diagnóstico por imagem , Prognóstico
4.
Radiother Oncol ; 197: 110368, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38834153

RESUMO

BACKGROUND AND PURPOSE: To optimize our previously proposed TransRP, a model integrating CNN (convolutional neural network) and ViT (Vision Transformer) designed for recurrence-free survival prediction in oropharyngeal cancer and to extend its application to the prediction of multiple clinical outcomes, including locoregional control (LRC), Distant metastasis-free survival (DMFS) and overall survival (OS). MATERIALS AND METHODS: Data was collected from 400 patients (300 for training and 100 for testing) diagnosed with oropharyngeal squamous cell carcinoma (OPSCC) who underwent (chemo)radiotherapy at University Medical Center Groningen. Each patient's data comprised pre-treatment PET/CT scans, clinical parameters, and clinical outcome endpoints, namely LRC, DMFS and OS. The prediction performance of TransRP was compared with CNNs when inputting image data only. Additionally, three distinct methods (m1-3) of incorporating clinical predictors into TransRP training and one method (m4) that uses TransRP prediction as one parameter in a clinical Cox model were compared. RESULTS: TransRP achieved higher test C-index values of 0.61, 0.84 and 0.70 than CNNs for LRC, DMFS and OS, respectively. Furthermore, when incorporating TransRP's prediction into a clinical Cox model (m4), a higher C-index of 0.77 for OS was obtained. Compared with a clinical routine risk stratification model of OS, our model, using clinical variables, radiomics and TransRP prediction as predictors, achieved larger separations of survival curves between low, intermediate and high risk groups. CONCLUSION: TransRP outperformed CNN models for all endpoints. Combining clinical data and TransRP prediction in a Cox model achieved better OS prediction.


Assuntos
Neoplasias Orofaríngeas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Humanos , Neoplasias Orofaríngeas/mortalidade , Neoplasias Orofaríngeas/diagnóstico por imagem , Neoplasias Orofaríngeas/patologia , Neoplasias Orofaríngeas/radioterapia , Neoplasias Orofaríngeas/terapia , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Redes Neurais de Computação , Adulto
5.
Comput Biol Med ; 177: 108675, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820779

RESUMO

BACKGROUND: The different tumor appearance of head and neck cancer across imaging modalities, scanners, and acquisition parameters accounts for the highly subjective nature of the manual tumor segmentation task. The variability of the manual contours is one of the causes of the lack of generalizability and the suboptimal performance of deep learning (DL) based tumor auto-segmentation models. Therefore, a DL-based method was developed that outputs predicted tumor probabilities for each PET-CT voxel in the form of a probability map instead of one fixed contour. The aim of this study was to show that DL-generated probability maps for tumor segmentation are clinically relevant, intuitive, and a more suitable solution to assist radiation oncologists in gross tumor volume segmentation on PET-CT images of head and neck cancer patients. METHOD: A graphical user interface (GUI) was designed, and a prototype was developed to allow the user to interact with tumor probability maps. Furthermore, a user study was conducted where nine experts in tumor delineation interacted with the interface prototype and its functionality. The participants' experience was assessed qualitatively and quantitatively. RESULTS: The interviews with radiation oncologists revealed their preference for using a rainbow colormap to visualize tumor probability maps during contouring, which they found intuitive. They also appreciated the slider feature, which facilitated interaction by allowing the selection of threshold values to create single contours for editing and use as a starting point. Feedback on the prototype highlighted its excellent usability and positive integration into clinical workflows. CONCLUSIONS: This study shows that DL-generated tumor probability maps are explainable, transparent, intuitive and a better alternative to the single output of tumor segmentation models.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Interface Usuário-Computador , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
6.
Blood Cancer J ; 14(1): 41, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38448432

RESUMO

Bridging therapy before CD19-directed chimeric antigen receptor (CAR) T-cell infusion is frequently applied in patients with relapsed or refractory Large B-cell lymphoma (r/r LBCL). This study aimed to assess the influence of quantified MATV and MATV-dynamics, between pre-apheresis (baseline) and pre-lymphodepleting chemotherapy (pre-LD) MATV, on CAR T-cell outcomes and toxicities in patients with r/r LBCL. MATVs were calculated semi-automatically at baseline (n = 74) and pre-LD (n = 68) in patients with r/r LBCL who received axicabtagene ciloleucel. At baseline, patients with a low MATV (< 190 cc) had a better time to progression (TTP) and overall survival (OS) compared to high MATV patients (p < 0.001). High MATV patients who remained stable or reduced upon bridging therapy showed a significant improvement in TTP (p = 0.041) and OS (p = 0.015), compared to patients with a high pre-LD MATV (> 480 cc). Furthermore, high MATV baseline was associated with severe cytokine release syndrome (CRS, p = 0.001). In conclusion, patients with low baseline MATV had the best TTP/OS and effective reduction or controlling MATV during bridging improved survival outcomes in patients with a high baseline MATV, providing rationale for the use of more aggressive bridging regimens.


Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Carga Tumoral , Linfoma Difuso de Grandes Células B/terapia , Proteínas Adaptadoras de Transdução de Sinal , Antígenos CD19 , Linfócitos T
7.
Artigo em Inglês | MEDLINE | ID: mdl-39147208

RESUMO

PURPOSE: Conventional normal tissue complication probability (NTCP) models for patients with head and neck cancer are typically based on single-value variables, which, for radiation-induced xerostomia, are baseline xerostomia and mean salivary gland doses. This study aimed to improve the prediction of late xerostomia by using 3-dimensional information from radiation dose distributions, computed tomography imaging, organ-at-risk segmentations, and clinical variables with deep learning (DL). METHODS AND MATERIALS: An international cohort of 1208 patients with head and neck cancer from 2 institutes was used to train and twice validate DL models (deep convolutional neural network, EfficientNet-v2, and ResNet) with 3-dimensional dose distribution, computed tomography scan, organ-at-risk segmentations, baseline xerostomia score, sex, and age as input. The NTCP endpoint was moderate-to-severe xerostomia 12 months postradiation therapy. The DL models' prediction performance was compared with a reference model: a recently published xerostomia NTCP model that used baseline xerostomia score and mean salivary gland doses as input. Attention maps were created to visualize the focus regions of the DL predictions. Transfer learning was conducted to improve the DL model performance on the external validation set. RESULTS: All DL-based NTCP models showed better performance (area under the receiver operating characteristic curve [AUC]test, 0.78-0.79) than the reference NTCP model (AUCtest, 0.74) in the independent test. Attention maps showed that the DL model focused on the major salivary glands, particularly the stem cell-rich region of the parotid glands. DL models obtained lower external validation performance (AUCexternal, 0.63) than the reference model (AUCexternal, 0.66). After transfer learning on a small external subset, the DL model (AUCtl, external, 0.66) performed better than the reference model (AUCtl, external, 0.64). CONCLUSION: DL-based NTCP models performed better than the reference model when validated in data from the same institute. Improved performance in the external data set was achieved with transfer learning, demonstrating the need for multicenter training data to realize generalizable DL-based NTCP models.

8.
Radiother Oncol ; 196: 110319, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38702014

RESUMO

BACKGROUND AND PURPOSE: Recently, a comprehensive xerostomia prediction model was published, based on baseline xerostomia, mean dose to parotid glands (PG) and submandibular glands (SMG). Previously, PET imaging biomarkers (IBMs) of PG were shown to improve xerostomia prediction. Therefore, this study aimed to explore the potential improvement of the additional PET-IBMs from both PG and SMG to the recent comprehensive xerostomia prediction model (i.e., the reference model). MATERIALS AND METHODS: Totally, 540 head and neck cancer patients were split into training and validation cohorts. PET-IBMs from the PG and SMG, were selected using bootstrapped forward selection based on the reference model. The IBMs from both the PG and SMG with the highest selection frequency were added to the reference model, resulting in a PG-IBM model and a SMG-IBM model which were combined into a composite model. Model performance was assessed using the area under the curve (AUC). Likelihood ratio test compared the predictive performance between the reference model and models including IBMs. RESULTS: The final selected PET-IBMs were 90th percentile of the PG SUV and total energy of the SMG SUV. The additional two PET-IBMs in the composite model improved the predictive performance of the reference model significantly. The AUC of the reference model and the composite model were 0.67 and 0.69 in the training cohort, and 0.71 and 0.73 in the validation cohort, respectively. CONCLUSION: The composite model including two additional PET-IBMs from PG and SMG improved the predictive performance of the reference xerostomia model significantly, facilitating a more personalized prediction approach.


Assuntos
Fluordesoxiglucose F18 , Neoplasias de Cabeça e Pescoço , Tomografia por Emissão de Pósitrons , Xerostomia , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Feminino , Masculino , Pessoa de Meia-Idade , Xerostomia/diagnóstico por imagem , Xerostomia/etiologia , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos , Idoso , Adulto , Glândula Submandibular/diagnóstico por imagem , Glândula Parótida/diagnóstico por imagem , Glândulas Salivares/diagnóstico por imagem
9.
Int J Radiat Oncol Biol Phys ; 119(5): 1569-1578, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38462018

RESUMO

PURPOSE: Given the limitations of extant models for normal tissue complication probability estimation for osteoradionecrosis (ORN) of the mandible, the purpose of this study was to enrich statistical inference by exploiting structural properties of data and provide a clinically reliable model for ORN risk evaluation through an unsupervised-learning analysis that incorporates the whole radiation dose distribution on the mandible. METHODS AND MATERIALS: The analysis was conducted on retrospective data of 1259 patients with head and neck cancer treated at The University of Texas MD Anderson Cancer Center between 2005 and 2015. During a minimum 12-month posttherapy follow-up period, 173 patients in this cohort (13.7%) developed ORN (grades I to IV). The (structural) clusters of mandibular dose-volume histograms (DVHs) for these patients were identified using the K-means clustering method. A soft-margin support vector machine was used to determine the cluster borders and partition the dose-volume space. The risk of ORN for each dose-volume region was calculated based on incidence rates and other clinical risk factors. RESULTS: The K-means clustering method identified 6 clusters among the DVHs. Based on the first 5 clusters, the dose-volume space was partitioned by the soft-margin support vector machine into distinct regions with different risk indices. The sixth cluster entirely overlapped with the others; the region of this cluster was determined by its envelopes. For each region, the ORN incidence rate per preradiation dental extraction status (a statistically significant, nondose related risk factor for ORN) was reported as the corresponding risk index. CONCLUSIONS: This study presents an unsupervised-learning analysis of a large-scale data set to evaluate the risk of mandibular ORN among patients with head and neck cancer. The results provide a visual risk-assessment tool for ORN (based on the whole DVH and preradiation dental extraction status) as well as a range of constraints for dose optimization under different risk levels.


Assuntos
Neoplasias de Cabeça e Pescoço , Mandíbula , Osteorradionecrose , Aprendizado de Máquina não Supervisionado , Humanos , Osteorradionecrose/etiologia , Neoplasias de Cabeça e Pescoço/radioterapia , Estudos Retrospectivos , Masculino , Feminino , Pessoa de Meia-Idade , Mandíbula/efeitos da radiação , Medição de Risco , Idoso , Dosagem Radioterapêutica , Análise por Conglomerados , Probabilidade , Órgãos em Risco/efeitos da radiação , Adulto , Doenças Mandibulares/etiologia , Máquina de Vetores de Suporte
10.
medRxiv ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39228724

RESUMO

Background: Existing studies on osteoradionecrosis of the jaw (ORNJ) have primarily used cross-sectional data, assessing risk factors at a single time point. Determining the time-to-event profile of ORNJ has important implications to monitor oral health in head and neck cancer (HNC) long-term survivors. Methods: Demographic, clinical and dosimetric data were retrospectively obtained for a clinical observational cohort of 1129 patients with HNC treated with radiotherapy (RT) at The University of Texas MD Anderson Cancer Center. ORNJ was diagnosed in 198 patients (18%). A multivariable logistic regression analysis with forward stepwise variable selection identified significant predictors for ORNJ. These predictors were then used to train a Weibull Accelerated Failure Time (AFT) model, which was externally validated using an independent cohort of 265 patients (92 ORNJ cases and 173 controls) treated at Guy's and St. Thomas' Hospitals. Findings: Our model identified that each unit increase in D25% is significantly associated with a 12% shorter time to ORNJ (Adjusted Time Ratio [ATR] 0·88, p<0·005); pre-RT dental extractions was associated to a 27% faster (ATR 0·73, p=0·13) onset of ORNJ; male patients experienced a 38% shorter time to ORNJ (ATR 0·62, p = 0·11). The model demonstrated strong internal calibration (integrated Brier score of 0·133, D-calibration p-value 0.998) and optimal discrimination at 72 months (Harrell's C-index of 0·72). The model also showed good generalization to the independent cohort, despite a slight drop in performance. Interpretation: This study is the first to demonstrate a direct relationship between radiation dose and the time to ORNJ onset, providing a novel characterization of the impact of delivered dose not only on the probability of a late effect (ORNJ), but the conditional risk during survivorship. Funding: This work was supported by various funding sources including NIH, NIDCR, NCI, NAPT, NASA, BCM, Affirmed Pharma, CRUK, KWF Dutch Cancer Society, NWO ZonMw, and the Apache Corporation.

11.
Insights Imaging ; 15(1): 8, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38228979

RESUMO

PURPOSE: To propose a new quality scoring tool, METhodological RadiomICs Score (METRICS), to assess and improve research quality of radiomics studies. METHODS: We conducted an online modified Delphi study with a group of international experts. It was performed in three consecutive stages: Stage#1, item preparation; Stage#2, panel discussion among EuSoMII Auditing Group members to identify the items to be voted; and Stage#3, four rounds of the modified Delphi exercise by panelists to determine the items eligible for the METRICS and their weights. The consensus threshold was 75%. Based on the median ranks derived from expert panel opinion and their rank-sum based conversion to importance scores, the category and item weights were calculated. RESULT: In total, 59 panelists from 19 countries participated in selection and ranking of the items and categories. Final METRICS tool included 30 items within 9 categories. According to their weights, the categories were in descending order of importance: study design, imaging data, image processing and feature extraction, metrics and comparison, testing, feature processing, preparation for modeling, segmentation, and open science. A web application and a repository were developed to streamline the calculation of the METRICS score and to collect feedback from the radiomics community. CONCLUSION: In this work, we developed a scoring tool for assessing the methodological quality of the radiomics research, with a large international panel and a modified Delphi protocol. With its conditional format to cover methodological variations, it provides a well-constructed framework for the key methodological concepts to assess the quality of radiomic research papers. CRITICAL RELEVANCE STATEMENT: A quality assessment tool, METhodological RadiomICs Score (METRICS), is made available by a large group of international domain experts, with transparent methodology, aiming at evaluating and improving research quality in radiomics and machine learning. KEY POINTS: • A methodological scoring tool, METRICS, was developed for assessing the quality of radiomics research, with a large international expert panel and a modified Delphi protocol. • The proposed scoring tool presents expert opinion-based importance weights of categories and items with a transparent methodology for the first time. • METRICS accounts for varying use cases, from handcrafted radiomics to entirely deep learning-based pipelines. • A web application has been developed to help with the calculation of the METRICS score ( https://metricsscore.github.io/metrics/METRICS.html ) and a repository created to collect feedback from the radiomics community ( https://github.com/metricsscore/metrics ).

12.
Phys Imaging Radiat Oncol ; 28: 100502, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38026084

RESUMO

Background and purpose: To compare the prediction performance of image features of computed tomography (CT) images extracted by radiomics, self-supervised learning and end-to-end deep learning for local control (LC), regional control (RC), locoregional control (LRC), distant metastasis-free survival (DMFS), tumor-specific survival (TSS), overall survival (OS) and disease-free survival (DFS) of oropharyngeal squamous cell carcinoma (OPSCC) patients after (chemo)radiotherapy. Methods and materials: The OPC-Radiomics dataset was used for model development and independent internal testing and the UMCG-OPC set for external testing. Image features were extracted from the Gross Tumor Volume contours of the primary tumor (GTVt) regions in CT scans when using radiomics or a self-supervised learning-based method (autoencoder). Clinical and combined (radiomics, autoencoder or end-to-end) models were built using multivariable Cox proportional-hazard analysis with clinical features only and both clinical and image features for LC, RC, LRC, DMFS, TSS, OS and DFS prediction, respectively. Results: In the internal test set, combined autoencoder models performed better than clinical models and combined radiomics models for LC, RC, LRC, DMFS, TSS and DFS prediction (largest improvements in C-index: 0.91 vs. 0.76 in RC and 0.74 vs. 0.60 in DMFS). In the external test set, combined radiomics models performed better than clinical and combined autoencoder models for all endpoints (largest improvements in LC, 0.82 vs. 0.71). Furthermore, combined models performed better in risk stratification than clinical models and showed good calibration for most endpoints. Conclusions: Image features extracted using self-supervised learning showed best internal prediction performance while radiomics features have better external generalizability.

13.
Phys Med Biol ; 68(5)2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36749988

RESUMO

Objective. Tumor segmentation is a fundamental step for radiotherapy treatment planning. To define an accurate segmentation of the primary tumor (GTVp) of oropharyngeal cancer patients (OPC) each image volume is explored slice-by-slice from different orientations on different image modalities. However, the manual fixed boundary of segmentation neglects the spatial uncertainty known to occur in tumor delineation. This study proposes a novel deep learning-based method that generates probability maps which capture the model uncertainty in the segmentation task.Approach. We included 138 OPC patients treated with (chemo)radiation in our institute. Sequences of 3 consecutive 2D slices of concatenated FDG-PET/CT images and GTVp contours were used as input. Our framework exploits inter and intra-slice context using attention mechanisms and bi-directional long short term memory (Bi-LSTM). Each slice resulted in three predictions that were averaged. A 3-fold cross validation was performed on sequences extracted from the axial, sagittal, and coronal plane. 3D volumes were reconstructed and single- and multi-view ensembling were performed to obtain final results. The output is a tumor probability map determined by averaging multiple predictions.Main Results. Model performance was assessed on 25 patients at different probability thresholds. Predictions were the closest to the GTVp at a threshold of 0.9 (mean surface DSC of 0.81, median HD95of 3.906 mm).Significance. The promising results of the proposed method show that is it possible to offer the probability maps to radiation oncologists to guide them in a in a slice-by-slice adaptive GTVp segmentation.


Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Neoplasias Orofaríngeas , Humanos , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X/métodos , Probabilidade , Processamento de Imagem Assistida por Computador/métodos
14.
Comput Struct Biotechnol J ; 21: 1102-1114, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789266

RESUMO

In the treatment of Non-Hodgkin lymphoma (NHL), multiple therapeutic options are available. Improving outcome predictions are essential to optimize treatment. The metabolic active tumor volume (MATV) has shown to be a prognostic factor in NHL. It is usually retrieved using semi-automated thresholding methods based on standardized uptake values (SUV), calculated from 18F-Fluorodeoxyglucose Positron Emission Tomography (18F-FDG PET) images. However, there is currently no consensus method for NHL. The aim of this study was to review literature on different segmentation methods used, and to evaluate selected methods by using an in house created software tool. A software tool, MUltiple SUV Threshold (MUST)-segmenter was developed where tumor locations are identified by placing seed-points on the PET images, followed by subsequent region growing. Based on a literature review, 9 SUV thresholding methods were selected and MATVs were extracted. The MUST-segmenter was utilized in a cohort of 68 patients with NHL. Differences in MATVs were assessed with paired t-tests, and correlations and distributions figures. High variability and significant differences between the MATVs based on different segmentation methods (p < 0.05) were observed in the NHL patients. Median MATVs ranged from 35 to 211 cc. No consensus for determining MATV is available based on the literature. Using the MUST-segmenter with 9 selected SUV thresholding methods, we demonstrated a large and significant variation in MATVs. Identifying the most optimal segmentation method for patients with NHL is essential to further improve predictions of toxicity, response, and treatment outcomes, which can be facilitated by the MUST-segmenter.

15.
Adv Radiat Oncol ; 8(4): 101163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798732

RESUMO

Purpose: Deep-learning (DL) techniques have been successful in disease-prediction tasks and could improve the prediction of mandible osteoradionecrosis (ORN) resulting from head and neck cancer (HNC) radiation therapy. In this study, we retrospectively compared the performance of DL algorithms and traditional machine-learning (ML) techniques to predict mandible ORN binary outcome in an extensive cohort of patients with HNC. Methods and Materials: Patients who received HNC radiation therapy at the University of Texas MD Anderson Cancer Center from 2005 to 2015 were identified for the ML (n = 1259) and DL (n = 1236) studies. The subjects were followed for ORN development for at least 12 months, with 173 developing ORN and 1086 having no evidence of ORN. The ML models used dose-volume histogram parameters to predict ORN development. These models included logistic regression, random forest, support vector machine, and a random classifier reference. The DL models were based on ResNet, DenseNet, and autoencoder-based architectures. The DL models used each participant's dose cropped to the mandible. The effect of increasing the amount of available training data on the DL models' prediction performance was evaluated by training the DL models using increasing ratios of the original training data. Results: The F1 score for the logistic regression model, the best-performing ML model, was 0.3. The best-performing ResNet, DenseNet, and autoencoder-based models had F1 scores of 0.07, 0.14, and 0.23, respectively, whereas the random classifier's F1 score was 0.17. No performance increase was apparent when we increased the amount of training data available for DL model training. Conclusions: The ML models had superior performance to their DL counterparts. The lack of improvement in DL performance with increased training data suggests that either more data are needed for appropriate DL model construction or that the image features used in DL models are not suitable for this task.

16.
IEEE Int Conf Healthc Inform ; 2023: 292-300, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38343586

RESUMO

Patient-Reported Outcomes (PRO) are collected directly from the patients using symptom questionnaires. In the case of head and neck cancer patients, PRO surveys are recorded every week during treatment with each patient's visit to the clinic and at different follow-up times after the treatment has concluded. PRO surveys can be very informative regarding the patient's status and the effect of treatment on the patient's quality of life (QoL). Processing PRO data is challenging for several reasons. First, missing data is frequent as patients might skip a question or a questionnaire altogether. Second, PROs are patient-dependent, a rating of 5 for one patient might be a rating of 10 for another patient. Finally, most patients experience severe symptoms during treatment which usually subside over time. However, for some patients, late toxicities persist negatively affecting the patient's QoL. These long-term severe symptoms are hard to predict and are the focus of this study. In this work, we model PRO data collected from head and neck cancer patients treated at the MD Anderson Cancer Center using the MD Anderson Symptom Inventory (MDASI) questionnaire as time series. We impute missing values with a combination of K nearest neighbor (KNN) and Long Short-Term Memory (LSTM) neural networks, and finally, apply LSTM to predict late symptom severity 12 months after treatment. We compare performance against clinical and ARIMA models. We show that the LSTM model combined with KNN imputation is effective in predicting late-stage symptom ratings for occurrence and severity under the AUC and F1 score metrics.

17.
Front Oncol ; 13: 1210087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37614495

RESUMO

Purpose: Identify Oropharyngeal cancer (OPC) patients at high-risk of developing long-term severe radiation-associated symptoms using dose volume histograms for organs-at-risk, via unsupervised clustering. Material and methods: All patients were treated using radiation therapy for OPC. Dose-volume histograms of organs-at-risk were extracted from patients' treatment plans. Symptom ratings were collected via the MD Anderson Symptom Inventory (MDASI) given weekly during, and 6 months post-treatment. Drymouth, trouble swallowing, mucus, and vocal dysfunction were selected for analysis in this study. Patient stratifications were obtained by applying Bayesian Mixture Models with three components to patient's dose histograms for relevant organs. The clusters with the highest total mean doses were translated into dose thresholds using rule mining. Patient stratifications were compared against Tumor staging information using multivariate likelihood ratio tests. Model performance for prediction of moderate/severe symptoms at 6 months was compared against normal tissue complication probability (NTCP) models using cross-validation. Results: A total of 349 patients were included for long-term symptom prediction. High-risk clusters were significantly correlated with outcomes for severe late drymouth (p <.0001, OR = 2.94), swallow (p = .002, OR = 5.13), mucus (p = .001, OR = 3.18), and voice (p = .009, OR = 8.99). Simplified clusters were also correlated with late severe symptoms for drymouth (p <.001, OR = 2.77), swallow (p = .01, OR = 3.63), mucus (p = .01, OR = 2.37), and voice (p <.001, OR = 19.75). Proposed cluster stratifications show better performance than NTCP models for severe drymouth (AUC.598 vs.559, MCC.143 vs.062), swallow (AUC.631 vs.561, MCC.20 vs -.030), mucus (AUC.596 vs.492, MCC.164 vs -.041), and voice (AUC.681 vs.555, MCC.181 vs -.019). Simplified dose thresholds also show better performance than baseline models for predicting late severe ratings for all symptoms. Conclusion: Our results show that leveraging the 3-D dose histograms from radiation therapy plan improves stratification of patients according to their risk of experiencing long-term severe radiation associated symptoms, beyond existing NTPC models. Our rule-based method can approximate our stratifications with minimal loss of accuracy and can proactively identify risk factors for radiation-associated toxicity.

18.
Oral Oncol ; 144: 106460, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37390759

RESUMO

OBJECTIVE: Evaluate the effectiveness of machine learning tools that incorporate spatial information such as disease location and lymph node metastatic patterns-of-spread, for prediction of survival and toxicity in HPV+ oropharyngeal cancer (OPC). MATERIALS & METHODS: 675 HPV+ OPC patients that were treated at MD Anderson Cancer Center between 2005 and 2013 with curative intent IMRT were retrospectively collected under IRB approval. Risk stratifications incorporating patient radiometric data and lymph node metastasis patterns via an anatomically-adjacent representation with hierarchical clustering were identified. These clusterings were combined into a 3-level patient stratification and included along with other known clinical features in a Cox model for predicting survival outcomes, and logistic regression for toxicity, using independent subsets for training and validation. RESULTS: Four groups were identified and combined into a 3-level stratification. The inclusion of patient stratifications in predictive models for 5-yr Overall survival (OS), 5-year recurrence free survival, (RFS) and Radiation-associated dysphagia (RAD) consistently improved model performance measured using the area under the curve (AUC). Test set AUC improvements over models with clinical covariates, was 9 % for predicting OS, and 18 % for predicting RFS, and 7 % for predicting RAD. For models with both clinical and AJCC covariates, AUC improvement was 7 %, 9 %, and 2 % for OS, RFS, and RAD, respectively. CONCLUSION: Including data-driven patient stratifications considerably improve prognosis for survival and toxicity outcomes over the performance achieved by clinical staging and clinical covariates alone. These stratifications generalize well to across cohorts, and sufficient information for reproducing these clusters is included.


Assuntos
Carcinoma , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Estadiamento de Neoplasias , Estudos Retrospectivos , Infecções por Papillomavirus/patologia , Neoplasias Orofaríngeas/patologia , Prognóstico , Análise por Conglomerados , Medição de Risco , Carcinoma/patologia
19.
Radiother Oncol ; 180: 109465, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640945

RESUMO

BACKGROUND: Post-treatment symptoms are a focal point of follow-up visits for head and neck cancer patients. While symptoms such as dysphagia and shortness-of-breath early after treatment may motivate additional work up, their precise association with disease control and survival outcomes is not well established. METHODS: This prospective data cohort study of 470 oropharyngeal cancer patients analyzed patient-reported swallowing, choking and shortness-of-breath symptoms at 3-to-6 months following radiotherapy to evaluate their association with overall survival and disease control. Associations between the presence of moderate-to-severe swallowing, choking and mild-to-severe shortness-of-breath and treatment outcomes were analyzed via Cox regression and Kaplan-Meier. The main outcome was overall survival (OS), and the secondary outcomes were local, regional, and distant disease control. RESULTS: The majority of patients (91.3%) were HPV-positive. Median follow-up time was 31.7 months (IQR: 21.9-42.1). Univariable analysis showed significant associations between OS and all three symptoms of swallowing, choking, and shortness-of-breath. A composite variable integrating scores of all three symptoms was significantly associated with OS on multivariable Cox regression (p = 0.0018). Additionally, this composite symptom score showed the best predictive value for OS (c-index = 0.75). Multivariable analysis also revealed that the composite score was significantly associated with local (p = 0.044) and distant (p = 0.035) recurrence/progression. Notably, the same significant associations with OS were seen for HPV-positive only subset analysis (p < 0.01 for all symptoms). CONCLUSIONS: Quantitative patient-reported measures of dysphagia and shortness-of-breath 3-to-6 months post-treatment are significant predictors of OS and disease recurrence/progression in OPC patients and in HPV-positive OPC only.


Assuntos
Transtornos de Deglutição , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Transtornos de Deglutição/etiologia , Estudos de Coortes , Estudos Prospectivos , Recidiva Local de Neoplasia , Falha de Tratamento
20.
Eur J Cancer ; 178: 150-161, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36442460

RESUMO

BACKGROUND: Personalised radiotherapy can improve treatment outcomes of patients with head and neck cancer (HNC), where currently a 'one-dose-fits-all' approach is the standard. The aim was to establish individualised outcome prediction based on multi-institutional international 'big-data' to facilitate risk-based stratification of patients with HNC. METHODS: The data of 4611 HNC radiotherapy patients from three academic cancer centres were split into four cohorts: a training (n = 2241), independent test (n = 786), and external validation cohorts 1 (n = 1087) and 2 (n = 497). Tumour- and patient-related clinical variables were considered in a machine learning pipeline to predict overall survival (primary end-point) and local and regional tumour control (secondary end-points); serially, imaging features were considered for optional model improvement. Finally, patients were stratified into high-, intermediate-, and low-risk groups. RESULTS: Performance score, AJCC8thstage, pack-years, and Age were identified as predictors for overall survival, demonstrating good performance in both the training cohort (c-index = 0.72 [95% CI, 0.66-0.77]) and in all three validation cohorts (c-indices: 0.76 [0.69-0.83], 0.73 [0.68-0.77], and 0.75 [0.68-0.80]). Excellent stratification of patients with HNC into high, intermediate, and low mortality risk was achieved; with 5-year overall survival rates of 17-46% for the high-risk group compared to 92-98% for the low-risk group. The addition of morphological image feature further improved the performance (c-index = 0.73 [0.64-0.81]). These models are integrated in a clinic-ready interactive web interface: https://uic-evl.github.io/hnc-predictor/ CONCLUSIONS: Robust model-based prediction was able to stratify patients with HNC in distinct high, intermediate, and low mortality risk groups. This can effectively be capitalised for personalised radiotherapy, e.g., for tumour radiation dose escalation/de-escalation.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Neoplasias de Cabeça e Pescoço/radioterapia , Prognóstico , Medição de Risco/métodos , Fatores de Risco , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA