RESUMO
Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , RNA Viral , Águas Residuárias , Centros de Atenção Terciária , Surtos de DoençasRESUMO
Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this approach has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021 and April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Relative to clinical cases identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.