Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(13): 5705-5715, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38460143

RESUMO

Extensive rare earth element (REE) mining activities have caused REE contamination of ambient agricultural soils, posing threats to associated food webs. Here, a simulated lettuce-snail food chain was conducted to evaluate the trophic transfer characteristics and the consequent effects of REEs on consumers. After 50-day exposure to soil, lettuce roots dose-dependently accumulated 9.4-76 mg kg-1 REEs and translocated 3.7-20 mg kg-1 REEs to shoots. Snails feeding on REE-contaminated shoots accumulated 3.0-6.7 mg kg-1 REEs with trophic transfer factors of 0.20-0.98, indicating trophic dilution in the lettuce-snail system. REE profiles in lettuce and snails indicated light REE (LREE) enrichment only in snails and the varied REE profiles along the food chain. This was corroborated by toxicokinetics. Estimated uptake (Ku) and elimination (Ke) parameters were 0.010-2.9 kgshoot kgsnail-1 day-1 and 0.010-1.8 day-1, respectively, with higher Ku values for LREE and HREE. The relatively high Ke, compared to Ku, indicating a fast REE elimination, supports the trophic dilution. Dietary exposure to REEs dose-dependently affected gut microbiota and metabolites in snails. These effects are mainly related to oxidative damage and energy expenditure, which are further substantiated by targeted analysis. Our study provides essential information about REE bioaccumulation characteristics and its associated risks to terrestrial food chains near REE mining areas.


Assuntos
Cadeia Alimentar , Metais Terras Raras , Herbivoria , Plantas , Solo , Lactuca
2.
Environ Sci Technol ; 57(30): 11009-11021, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37471269

RESUMO

Molybdenum disulfide (MoS2) nanosheets are increasingly applied in several fields, but effective and accurate strategies to fully characterize potential risks to soil ecosystems are lacking. We introduce a coelomocyte-based in vivo exposure strategy to identify novel adverse outcome pathways (AOPs) and molecular endpoints from nontransformed (NTMoS2) and ultraviolet-transformed (UTMoS2) MoS2 nanosheets (10 and 100 mg Mo/L) on the earthworm Eisenia fetida using nontargeted lipidomics integrated with transcriptomics. Machine learning-based digital pathology analysis coupled with phenotypic monitoring was further used to establish the correlation between lipid profiling and whole organism effects. As an ionic control, Na2MoO4 exposure significantly reduced (61.2-79.5%) the cellular contents of membrane-associated lipids (glycerophospholipids) in earthworm coelomocytes. Downregulation of the unsaturated fatty acid synthesis pathway and leakage of lactate dehydrogenase (LDH) verified the Na2MoO4-induced membrane stress. Compared to conventional molybdate, NTMoS2 inhibited genes related to transmembrane transport and caused the differential upregulation of phospholipid content. Unlike NTMoS2, UTMoS2 specifically upregulated the glyceride metabolism (10.3-179%) and lipid peroxidation degree (50.4-69.4%). Consequently, lipolytic pathways were activated to compensate for the potential energy deprivation. With pathology image quantification, we report that UTMoS2 caused more severe epithelial damage and intestinal steatosis than NTMoS2, which is attributed to the edge effect and higher Mo release upon UV irradiation. Our results reveal differential AOPs involving soil sentinel organisms exposed to different Mo forms, demonstrating the potential of liposome analysis to identify novel AOPs and furthermore accurate soil risk assessment strategies for emerging contaminants.


Assuntos
Rotas de Resultados Adversos , Oligoquetos , Poluentes do Solo , Animais , Poluentes do Solo/toxicidade , Oligoquetos/metabolismo , Lipidômica , Molibdênio/toxicidade , Ecossistema , Solo
3.
Environ Sci Technol ; 57(51): 21637-21649, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38012053

RESUMO

Fully understanding the cellular uptake and intracellular localization of MoS2 nanosheets (NSMoS2) is a prerequisite for their safe applications. Here, we characterized the uptake profile of NSMoS2 by functional coelomocytes of the earthworm Eisenia fetida. Considering that vacancy engineering is widely applied to enhance the NSMoS2 performance, we assessed the potential role of such atomic vacancies in regulating cellular uptake processes. Coelomocyte internalization and lysosomal accumulation of NSMoS2 were tracked by fluorescent labeling imaging. Cellular uptake inhibitors, proteomics, and transcriptomics helped to mechanistically distinguish vacancy-mediated endocytosis pathways. Specifically, Mo ions activated transmembrane transporter and ion-binding pathways, entering the coelomocyte through assisted diffusion. Unlike molybdate, pristine NSMoS2 (P-NSMoS2) induced protein polymerization and upregulated gene expression related to actin filament binding, which phenotypically initiated actin-mediated endocytosis. Conversely, vacancy-rich NSMoS2 (V-NSMoS2) were internalized by coelomocytes through a vesicle-mediated and energy-dependent pathway. Mechanistically, atomic vacancies inhibited mitochondrial transport gene expression and likely induced membrane stress, significantly enhancing endocytosis (20.3%, p < 0.001). Molecular dynamics modeling revealed structural and conformational damage of cytoskeletal protein caused by P-NSMoS2, as well as the rapid response of transport protein to V-NSMoS2. These findings demonstrate that earthworm functional coelomocytes can accumulate NSMoS2 and directly mediate cytotoxicity and that atomic vacancies can alter the endocytic pathway and enhance cellular uptake by reprogramming protein response and gene expression patterns. This study provides an important mechanistic understanding of the ecological risks of NSMoS2.


Assuntos
Oligoquetos , Animais , Oligoquetos/metabolismo , Molibdênio/farmacologia , Transporte Biológico , Simulação por Computador , Imagem Molecular
4.
Ecotoxicol Environ Saf ; 252: 114599, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738615

RESUMO

Silver (Ag) is one of the most used elements in the nanomaterials (NMs) form, which upon release to the environment can be harmful to organisms. We compared the toxicokinetics (TK) and toxicodynamics (TD) of Ag from AgNO3 (0, 15, 45, 135, 405 mg Ag/kg soil) and AgNM300K (0, 75, 150, 300, 600, 1200 mg Ag/kg soil) in the model organism Enchytraeus crypticus. Organisms were exposed in LUFA 2.2 soil, and besides body Ag concentrations, survival and reproduction were determined, in a time series (for 21 days). In the soil, the available (CaCl2 extractable) Ag fraction from Ag NM300K increased from 0 to 21 days but did not consistently change for AgNO3. Internal concentrations reached equilibrium in most exposures to both Ag forms. The organisms were able to internalize and eliminate Ag, but less when exposed to Ag NM300K. The overall uptake rate constants for Ag from AgNO3 and Ag NM300K exposures were 0.05 and 0.06 kg soil/kg organism/day, respectively, the elimination rate constants 0.2 and 0.1 day-1, respectively. For AgNO3 the median lethal concentrations decreased steadily with time, while for Ag NM300K they remained constant during the first 10 days of exposure followed by a 2-fold decline in the last 7 days. The 21-d LC50s for both Ag forms were similar but the LC50inter (based on internal concentrations) were 63 and 121 mg Ag/kg body DW (Dry Weight) for AgNO3 and Ag NM300K, respectively, showing higher toxicity of AgNO3. These results show the importance of assessing time to toxicity, a relevant factor in toxicity assessment, especially for NMs.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Oligoquetos , Poluentes do Solo , Animais , Solo , Toxicocinética , Poluentes do Solo/análise , Nanoestruturas/toxicidade , Nanopartículas Metálicas/toxicidade
5.
Ecotoxicology ; 32(10): 1209-1220, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37989986

RESUMO

Standard toxicity tests expose springtails (Collembola) through soil, while dietary exposure tests with animals visible on a surface are less commonly applied. We refined a method for dietary chemical exposure for two widely distributed and abundant Collembola species: Folsomia quadrioculata and Hypogastrura viatica as existing methods were sub-optimal. Newly hatched Collembola were offered bark with a natural layer of Cyanobacteria that was either moistened with a solution of the neonicotinoid insecticide imidacloprid using a micropipette or soaked in the solution overnight. The first method was superior in producing a measured concentration close to the nominal (0.21 and 0.13 mg/kg dry bark, respectively), and resulting in sub-lethal effects as expected. The adult body size was reduced by 8% for both species, but egg production only in H. viatica. Contrastingly, soaked bark resulted in a measured concentration of 8 mg/kg dry bark, causing high mortality and no egg production in either species. Next, we identified the sub-lethal concentration-range by moistening the bark to expose H. viatica to 0, 0.01, 0.04, 0.13, 0.43 and 1.2 mg imidacloprid/kg dry bark. Only the highest concentration affected survival, causing a mortality of 77%. Imidacloprid reduced moulting rate and the body size at first reproduction. The age at first reproduction appeared delayed as some replicates did not reproduce within the experiment duration. The method of moistened bark for dietary exposure proved optimal to continuously study life history traits, such as growth and reproductive outcomes, which are important to understand effects on key events crucial for population viability and growth.


Assuntos
Artrópodes , Inseticidas , Animais , Exposição Dietética , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Inseticidas/toxicidade
6.
Environ Sci Technol ; 56(2): 1138-1148, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34964610

RESUMO

Soil ecotoxicological assays on nanoparticles (NPs) have mainly investigated single components (e.g., plants, fauna, and microbes) within the ecosystem, neglecting possible effects resulting from the disturbance of the interactions between these components. Here, we investigated soil microbial responses to CeO2 NPs in the presence and absence of earthworms from the perspectives of microbial functions (i.e., enzyme activities), the community structure, and soil metabolite profiles. Exposure to CeO2 NPs (50, 500 mg/kg) alone decreased the activities of enzymes (i.e., acid protease and acid phosphatase) participating in soil N and P cycles, while the presence of earthworms ameliorated these inhibitory effects. After the CeO2 NP exposure, the earthworms significantly altered the relative abundance of some microbes associated with the soil N and P cycles (Flavobacterium, Pedobacter, Streptomyces, Bacillus, Bacteroidota, Actinobacteria, and Firmicutes). This was consistent with the pattern found in the significantly changed metabolites which were also involved in the microbial N and P metabolism. Both CeO2 NPs and earthworms changed the soil bacterial community and soil metabolite profiles. Larger alterations of soil bacteria and metabolites were found under CeO2 NP exposure with earthworms. Overall, our study indicates that the top-down control of earthworms can drastically modify the microbial responses to CeO2 NPs from all studied biological aspects. This clearly shows the importance of the holistic consideration of all soil ecological components to assess the environmental risks of NPs to soil health.


Assuntos
Cério , Nanopartículas , Oligoquetos , Poluentes do Solo , Animais , Cério/toxicidade , Ecossistema , Nanopartículas/toxicidade , Oligoquetos/metabolismo , Solo/química , Microbiologia do Solo , Poluentes do Solo/metabolismo
7.
Ecotoxicol Environ Saf ; 236: 113485, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35390690

RESUMO

The aim of this study was to evaluate the toxicokinetics-toxicodynamics (TKTD) of Cu and Cd in the soil model organism Enchytraeus crypticus, and assess the development of internal effect concentrations over time. Animals were exposed in LUFA 2.2 soil spiked with increasing concentrations of Cu and Cd. Survival, reproduction and internal metal concentrations in the animals were evaluated at different points in time over a period of 21 days. Internal concentrations increased with time, for Cu reaching a steady state after c. 10 days, except for the highest test concentration, and for Cd continuing to increase after 21 days. Applying a one-compartment model to all data together, estimated uptake and elimination rate constants for Cu and Cd were 0.08 and 0.45 kg soil/kg organism/day and 0.4 and 0.04 per day, respectively. Median lethal concentrations, based on total soil concentrations, decreased with time for Cu and did not reach a steady state level, but they did not change with time for Cd. The LC50inter (based on internal concentrations) was 75 mg Cu/kg body DW and > 800 mg Cd/kg body weight. Animals were able to regulate Cu internal concentrations, keeping them low, while for Cd internal concentrations continued to increase showing lack of regulation and also the importance of exposure time. This study highlights the advantages of using a TKTD approach to understand the relation between organism survival and internal Cu or Cd concentrations over time.


Assuntos
Oligoquetos , Poluentes do Solo , Animais , Cádmio/toxicidade , Cobre/toxicidade , Oligoquetos/fisiologia , Solo , Poluentes do Solo/análise , Toxicocinética
8.
Ecotoxicology ; 31(9): 1450-1461, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36319919

RESUMO

The use of pesticides to protect crops often affects non-target organisms vital to ecosystem functioning. A functional soil mesofauna is important for decomposition and nutrient cycling processes in agricultural soils, which generally have low biodiversity. To assess pesticide effects on natural soil communities we enclosed intact soil cores in situ in an agricultural field in 5 cm wide mesocosms. We used two types of mesh lids on the mesocosms, allowing or preventing migration of mesofauna. The mesocosms were exposed to the insecticide imidacloprid (0, 0.1, 1, and 10 mg/kg dry soil) and left in the field for 20 days. Overall, regardless of lid type, mesocosm enclosure did not affect springtail or mite abundances during the experiment when compared with undisturbed soil. Imidacloprid exposure reduced the abundance of both surface- and soil-living springtails in a concentration-dependent manner, by 65-90% at the two highest concentrations, and 21-23% at 0.1 mg/kg, a concentration found in some agricultural soils after pesticide application. Surface-living springtails were more affected by imidacloprid exposure than soil-living ones. In contrast, neither predatory nor saprotrophic mites showed imidacloprid-dependent changes in abundance, concurring with previous findings indicating that mites are generally less sensitive to neonicotinoids than other soil organisms. The possibility to migrate did not affect the springtail or mite abundance responses to imidacloprid. We show that under realistic exposure concentrations in the field, soil arthropod community composition and abundance can be substantially altered in an organism-dependent manner, thus affecting the soil community diversity.


Assuntos
Ácaros , Praguicidas , Animais , Praguicidas/toxicidade , Ecossistema , Neonicotinoides/toxicidade , Solo
9.
Environ Sci Technol ; 55(3): 1876-1884, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448851

RESUMO

Although the toxicokinetics of organic pollutants in soil invertebrates under optimal and constant temperature has been widely reported, their uptake, elimination, and bioaccumulation under suboptimal temperatures, and especially daily fluctuating temperature (FT) regimes have received only little research attention. In this study, the uptake, elimination, and bioaccumulation of phenanthrene (PHE) in Enchytraeus albidus (Oligochaeta) under different constant temperatures, and an FT regime were investigated in a natural soil. In general, the PHE concentrations in worm tissues reached steady state within 14 days at different temperatures. The uptake (ku) and elimination (ke) rate constants and the bioaccumulation increased with increasing temperature likely because of an increased diffusivity of PHE into the worms and an increased metabolic rate. Interestingly, the bioaccumulation factor of PHE in E. albidus showed a positive relationship with temperature because the slope of the ku-temperature relationship was larger than that of the ke-temperature relationship. Further, the uptake and elimination rate constants were larger under the FT regime than at the constant average of the fluctuating temperature. These findings suggest that, climatic conditions, especially daily fluctuating temperatures, should be considered for the assessment of the toxicokinetics of organic pollutants in terrestrial organisms.


Assuntos
Oligoquetos , Fenantrenos , Poluentes do Solo , Animais , Fenantrenos/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Temperatura , Toxicocinética
10.
Environ Res ; 201: 111495, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34133973

RESUMO

Abrasion of tire wear is one of the largest sources of microplastics to the environment. Although most tire particles settle into soils, studies on their ecotoxicological impacts on the terrestrial environment are scarce. Here, the effects of tire particles (<180 µm) on three ecologically relevant soil invertebrate species, the enchytraeid worm Enchytraeus crypticus, the springtail Folsomia candida and the woodlouse Porcellio scaber, were studied. These species were exposed to tire particles spiked in soil or in food at concentrations of 0.02%, 0.06%, 0.17%, 0.5% and 1.5% (w/w). Tire particles contained a variety of potentially harmful substances. Zinc (21 900 mg kg-1) was the dominant trace element, whilst the highest concentrations of the measured organic compounds were detected for benzothiazole (89.2 mg kg-1), pyrene (4.85 mg kg-1), chlorpyrifos (0.351 mg kg-1), HCB (0.134 mg kg-1), methoxychlor (0.116 mg kg-1) and BDE 28 (0.100 mg kg-1). At the highest test concentration in soil (1.5%), the tire particles decreased F. candida reproduction by 38% and survival by 24%, and acetylcholinesterase (AChE) activity of P. scaber by 65%, whilst the slight decrease in the reproduction of E. crypticus was not dose-dependent. In food, the highest test concentration of tire particles reduced F. candida survival by 38%. These results suggest that micro-sized tire particles can affect soil invertebrates at concentrations found at roadsides, whilst short-term impacts at concentrations found further from the roadsides are unlikely.


Assuntos
Artrópodes , Oligoquetos , Poluentes do Solo , Acetilcolinesterase , Animais , Invertebrados , Microplásticos , Plásticos , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
Ecotoxicology ; 30(2): 331-342, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33432456

RESUMO

Three soil types with different physicochemical properties were selected to evaluate their effect on lead and cadmium bioavailability and toxicity in the land snail Helix aspersa. In 28-day ecotoxicity tests, H. aspersa juveniles were exposed to increasing concentrations of Pb or Cd. EC50s, concentrations reducing snail growth by 50%, differed between the soils and so did Cd and Pb uptake in the snails. For lead, EC50s were 2397-6357 mg Pb/kg dry soil, while they ranged between 327 and 910 mg Cd/kg dry soil for cadmium. Toxicity and metal uptake were highest on the soil with the lowest pH, organic matter content and Cation Exchange Capacity (CEC). Growth reduction was correlated with metal accumulation levels in the snails' soft body, and differences in toxicity between the soils decreased when EC50s were expressed on the basis of internal metal concentrations in the snails. These results confirm the effect of soil properties; pH, CEC, OM content, on the uptake and growth effect of Pb and Cd in H. aspersa, indicating the importance of properly characterizing soils when assessing the environmental risk of metal contaminated sites.


Assuntos
Cádmio , Poluentes do Solo , Animais , Cádmio/toxicidade , Caracois Helix , Chumbo/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
12.
Ecotoxicology ; 30(6): 1216-1226, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34046816

RESUMO

Microplastic fibers (MF) are released from synthetic textiles during washing and end up in the wastewater. Similarly, silver nanoparticles (AgNP), incorporated in textiles as antimicrobial agents, are released in washing machines, also reaching the wastewater treatment plants. Therefore, both MF and AgNP co-exist in the environment and enter the soil compartment mainly via the application of biosolids. Yet, the combined effect of MF and AgNP has not been studied. Here, we assessed the effects of polyester MF on the toxicity of AgNP and AgNO3 to the earthworm Eisenia andrei and the enchytraeid Enchytraeus crypticus. The organisms were exposed to a range of concentration of AgNP (32, 100, 320, 1000, 3200 mg Ag/kg) and AgNO3 (12.8, 32, 80, 200, 500 mg Ag/kg) in LUFA 2.2 soil in the absence or presence of MF (0.01% DW). Reproduction tests were conducted and the toxicity outcomes compared between soils with and without MF. The exposure to MF caused a decrease in the number of juveniles and changed the biochemical composition of earthworms. Moreover, the presence of MF increased the toxicity of AgNP to earthworm reproduction (EC50 = 165 mg Ag/kg) when compared to AgNP exposure alone (EC50 = 450 mg Ag/kg), but did not alter the toxicity of AgNO3 (EC50 = 40 mg Ag/kg). For enchytraeids, no significant difference in Ag toxicity could be detected when MF was added to the soil for both AgNP and AgNO3. Overall, Ag bioaccumulation was not affected by MF, except for a decrease in earthworm body concentration at the highest Ag soil concentration (3200 mg Ag/kg). Our results suggest that the presence of MF in the soil compartment may be a cause of concern, and that the joint exposure to Ag may be deleterious depending on the Ag form, organism, and endpoint. The present work provides the first evidence that a realistic MF concentration in soil lowers AgNP concentration necessary to provoke reproductive impairment in earthworms. The influence of MF on the risk assessment of AgNP should be considered.


Assuntos
Nanopartículas Metálicas , Oligoquetos , Poluentes do Solo , Animais , Bioacumulação , Nanopartículas Metálicas/toxicidade , Microplásticos , Plásticos/toxicidade , Prata/toxicidade , Nitrato de Prata/toxicidade , Solo , Poluentes do Solo/toxicidade
13.
Environ Sci Technol ; 54(4): 2379-2388, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31976662

RESUMO

Hardly any study has focused on the quantitative modeling of the toxicity of anionic metal(loid)s and their mixtures in the presence of potentially competing anions. Here, we designed a univariate experiment (420 treatments) to investigate the influence of various anions (phosphate, sulfate, carbonate, and OH-) on the toxicity of single anionic metal(loid)s (arsenate, selenite, and vanadate) and a full factorial mixture experiment (196 treatments) to examine the interactions and toxicity of As-Se mixtures at 4 phosphate levels. Standard root elongation tests with wheat (Triticum aestivum) were performed. A modeling framework, resembling the biotic ligand model (BLM) for cationic metals, was developed, extended, and applied to explain anion competitions and mixture effects. Carbonate significantly alleviated the toxicity of all three metal(loid)s. The toxicity of As was significantly mitigated by phosphate, while V toxicity was significantly relieved by OH-. The BLM-like model successfully explained more than 93% of the observed variance in toxicity. With the parameters derived from single-metal(loid) exposures, the developed BLM-toxic unit model reached an overall prediction performance of 78% in modeling the toxicity of As-Se mixtures at varying phosphate levels, validating the effectiveness of the model framework. It is concluded that by taking possible anion competitions and interactions into account, the BLM-type approaches can serve as promising tools for the risk assessment of single and mixed metal(loid)s contamination.


Assuntos
Arseniatos , Vanadatos , Cátions , Ácido Selenioso , Triticum
14.
Environ Res ; 188: 109736, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32521305

RESUMO

The risk assessment of mixtures of rare earth elements (REEs) is hampered by a lack of fundamental understanding of their interactions in different soil types. Here, we assessed mixture interactions and toxicity to Triticum aestivum of Y and Ce in four different soils in relation to their bioavailability. Mixture toxicity was modelled by concentration addition (CA) and independent action (IA), in combination with different expressions of exposure: three equilibrium-based doses (total soil concentrations [M]tot, free ion activity in soil solution {M3+}, and the fraction (f) of metal ions bound to the biotic ligands (BLs)) and one kinetically controlled dose ([M]flux) metrics. Upon single exposure, REE toxicity was increasingly better described when using exposure expressions based on deepened understanding of their bioavailability: [M]flux > f > {M3+} > [M]tot. The mixture analyses based on [M]tot and {M3+} displayed deviations from additivity depending on the soil type. With the parameters derived from single exposures, the BLM approach gave better predictions of mixture toxicity (R2 ~ 0.70) than when using CA and IA based on either [M]tot or {M3+} (R2 < 0.64). About 30% of the variance in toxicity remained unexplained, challenging the view that the free metal ion is the main bioavailable form under the BLM framework based on thermodynamic equilibrium. Toxicity was best described when accounting for changes in the size of the labile metal pool by using a kinetically controlled dose metric (R2 ~ 0.80). This suggests that dynamic bioavailability analysis could provide a robust basis for modeling and reconciling the interplays and toxicity of metal mixtures in different soils.


Assuntos
Metais Terras Raras , Poluentes do Solo , Disponibilidade Biológica , Metais , Metais Terras Raras/análise , Metais Terras Raras/toxicidade , Solo , Poluentes do Solo/toxicidade , Triticum
15.
Ecotoxicol Environ Saf ; 194: 110446, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32171122

RESUMO

Pesticides can affect all receiving compartments, especially soils, and their fate and effects may be enhanced by temperature, increasing their risk to ecological functions of soils. In Brazil, the most widely used pesticides are the insecticide Kraft 36 EC® (a.s. abamectin) and the fungicide Score 250 EC® (a.s. difenoconazole), which are commonly used in strawberry, often simultaneously as a mixture. The aim of this study was to evaluate the toxicity of realistic environmental applications, single and in mixtures, for both pesticides to the springtail Folsomia candida and the plant species Allium cepa (onion) and Lycopersicum esculentum (tomato). Mesocosms filled with Brazilian natural soil (lattosolo) were dosed with water (control), Kraft (10.8 g a.s/ha), Score (20 g.a.s/ha) and Kraft + Score (10.8 + 20 g a.s./ha). The applications were repeated every 7 days, during 18 days of experiment, and simulating rainfall twice a week. Collembola reproduction tests were conducted with soils from the first (day 1) and last day (day 18) of experiment for each treatment. Plant toxicity tests were carried out in the experimental units. The experiments were run at 23 °C and 33 °C. Kraft, alone and in the binary mixture, showed high toxicity to the springtails in soils from both days 1 and 18, especially at 23 °C where it caused 100% mortality. Score however, was not toxic to the springtails. Plant growth was reduced by Score, but responses varied depending on temperature. This study indicates a high environmental risk of the insecticide Kraft, particularly at lower temperatures (23 °C), and an influence of temperature on pesticide fate and effects.


Assuntos
Dioxolanos/toxicidade , Ivermectina/análogos & derivados , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Animais , Artrópodes/fisiologia , Brasil , Exposição Ambiental , Fungicidas Industriais , Inseticidas/toxicidade , Ivermectina/toxicidade , Praguicidas/toxicidade , Solo , Temperatura , Testes de Toxicidade
16.
Ecotoxicology ; 29(7): 900-911, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32588237

RESUMO

Chromated copper arsenate (CCA) mixtures were used in the past for wood preservation, leading to large scale soil contamination. This study aimed at contributing to the risk assessment of CCA-contaminated soils by assessing the toxicity of binary mixtures of copper, chromium and arsenic to the earthworm Eisenia andrei in OECD artificial soil. Mixture effects were related to reference models of Concentration Addition (CA) and Independent Action (IA) using the MIXTOX model, with effects being related to total and available (H2O and 0.01 M CaCl2 extractable) concentrations in the soil. Since only in mixtures with arsenic dose-related mortality occurred (LC50 92.5 mg/kg dry soil), it was not possible to analyze the mixture effects on earthworm survival with the MIXTOX model. EC50s for effects of Cu, Cr and As on earthworm reproduction, based on total soil concentrations, were 154, 449 and 9.1 mg/kg dry soil, respectively. Effects of mixtures were mainly antagonistic when related to the CA model but additive related to the IA model. This was the case when mixture effects were based on total and H2O-extractable concentrations; when based on CaCl2-extractable concentrations effects mainly were additive related to the CA model except for the Cr-As mixture which acted antagonistically. These results suggest that the CCA components do interact leading to a reduced toxicity when present in a mixture.


Assuntos
Arsênio/toxicidade , Cromo/toxicidade , Cobre/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Arseniatos/toxicidade , Testes de Toxicidade
17.
Exp Appl Acarol ; 82(1): 81-93, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32812208

RESUMO

Avoidance behavior can be a useful parameter for assessing the ability of organisms to escape from pollutants in their environment. For soil evaluation, a variety of invertebrates is used including the oribatid mite Oppia nitens. Here, we tested the avoidance behavior of O. nitens using a two-chamber test and an escape test with exposures to different cadmium concentrations of up to 800 mg kg-1 dry LUFA 2.2 soil for 2, 4, and 6 days, and up to 7 weeks. With the two-chamber method, the oribatid mites had the choice between clean and polluted soils, whereas they were allowed to escape from a box with polluted soil to clean containers without soil with the escape method. Avoidance of cadmium was observed after 2 days in both tests and the net response of the mites in the two-chamber test increased with increasing cadmium exposure concentrations. Mite responses varied through time, especially with the escape method; with the avoidance behavior becoming more variable and overall non-significant with longer test durations. This is the first study investigating the escape test simultaneously with long-term avoidance of cadmium by O. nitens. This mite species is a promising species for avoidance testing in soil ecotoxicology, but more experiments are needed to evaluate the factors that influence its responses in laboratory tests and the consequences for its distribution in contaminated ecosystems.


Assuntos
Comportamento Animal , Cádmio/análise , Ácaros/fisiologia , Poluentes do Solo , Animais , Ecotoxicologia , Solo , Poluentes do Solo/análise
18.
Ecotoxicol Environ Saf ; 169: 33-39, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30412896

RESUMO

In a previous study, Pb toxicity was found to be delayed compared to Pb bioaccumulation in Enchytraeus crypticus. This study aimed at further investigating the acute and delayed onset of Pb toxicity in E. crypticus by using a combination of toxicokinetics and toxicodynamics approaches. Enchytraeids were exposed to different Pb concentrations (uptake phase) in natural LUFA 2.2 soil for different short-term exposure periods, followed by a 7-d elimination phase in clean soils. Body Pb concentrations and enchytraeid mortality were determined at different time intervals during both the exposure and the elimination phase. Pb uptake kinetics in E. crypticus were well described by a three-stage first-order model with an initial overshoot in body Pb concentrations. At higher exposure concentrations, Pb caused delayed enchytraeid mortality even following short-term exposure. LC50 based on body Pb concentrations appeared no good descriptor of delayed Pb toxicity in E. crypticus. Exposure time had a major impact on Pb bioaccumulation, toxicity and its delayed effects, which argues against relying on ecotoxicity tests for metal toxicity using a fix exposure duration. The presence of delayed toxic effects also suggests that post-exposure observations are necessary to avoid underestimation of metal toxicity.


Assuntos
Chumbo/toxicidade , Oligoquetos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Chumbo/farmacocinética , Oligoquetos/metabolismo , Solo , Poluentes do Solo/farmacocinética , Toxicocinética
19.
Ecotoxicol Environ Saf ; 175: 181-191, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30897417

RESUMO

Insecticide exposure may cause both transgenerational and multigenerational effects on populations, but the molecular mechanisms of these changes remain largely unclear. Many studies have focused on either transgenerational or multigenerational mechanisms but did neglect the comparative aspects. This study assessed whether the pyrethroid insecticide etofenprox (formulation Trebon® 30 EC) shows transgenerational and/or multigenerational effects on the survival and reproduction of Folsomia candida (Collembola). The activation of stress-related genes was studied to detect whether etofenprox modifies the expression of reproduction-associated genes in trans- and multigenerational treatments. A laboratory study was carried out for three generations with five insecticide concentrations in LUFA 2.2 soil. In the transgenerational treatment, only the parent generation (P) was exposed, but the subsequent generations were not. In the multigenerational treatment, all three generations were exposed to the insecticide in the same manner. Multigenerational exposure resulted in reduced reproduction effects over generations, suggesting that F. candida is capable of acclimating to enhanced concentration levels of etofenprox during prolonged exposure over multiple generations. In the transgenerational treatment, the heat shock protein 70 was up-regulated and cytochrome oxidase 6N4v1 expression down-regulated in a dose-dependent manner in the F2 generation. This finding raises the possibility of the epigenetic inheritance of insecticide impacts on parents. Furthermore, CYP6N4v1 expression was oppositely regulated in the trans- and multigenerational treatments. Our results draw attention to the differences in molecular level responses of F. candida to trans- and multigenerational etofenprox exposure.


Assuntos
Artrópodes/efeitos dos fármacos , Epigênese Genética , Regulação da Expressão Gênica , Inseticidas/efeitos adversos , Piretrinas/efeitos adversos , Aclimatação , Animais , Artrópodes/genética , Artrópodes/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Reprodução/efeitos dos fármacos , Solo
20.
Ecotoxicol Environ Saf ; 181: 534-547, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31234068

RESUMO

Despite the increasing use of pesticides in tropical countries, research and legislative efforts have focused on their temperate counterparts. This paper presents a review of the literature on environmental risk assessment of pesticides for tropical terrestrial agroecosystems. It aims at evaluating potential differences in pesticide risk between temperate and tropical regions as well as to highlight research needs in the latter. Peculiarities of pesticide risks in tropical terrestrial agroecosystems are discussed in subsections 1) agricultural practices; 2) research efforts; 3) fate and exposure; 4) toxicity testing methods; and 5) sensitivity. The intensive and often inadequate pesticide application practices in tropical areas are likely to result in a relatively greater pesticide exposure in edge-of-field water bodies. Since pesticide fate may be different under tropical conditions, tropical scenarios for models estimating predicted environmental pesticide concentrations should be developed. Sensitivity comparisons do not indicate a consistent similar, greater or lower relative sensitivity of tropical soil organisms as compared to temperate organisms. However, several methods and procedures for application in the tropics need to be developed, which include: 1) identifying and collecting natural soils to be used as reference test substrates in tests; 2) identifying and discerning the range of sensitivity of native test species to soil contaminants; 3) developing test guidelines applicable to tropical/subtropical conditions; and 4) developing methods and procedures for higher tier testing for full development and implementation of environmental risk assessment schemes.


Assuntos
Ecossistema , Praguicidas/toxicidade , Poluentes do Solo/toxicidade , Testes de Toxicidade/normas , Clima Tropical , Agricultura , Biomarcadores Ambientais , Medição de Risco , Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA