Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Glia ; 69(6): 1444-1463, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33502042

RESUMO

Neurodegenerative disorders, characterized by progressive neuronal loss, eventually lead to functional impairment in the adult mammalian central nervous system (CNS). Importantly, these deteriorations are irreversible, due to the very limited regenerative potential of these CNS neurons. Stimulating and redirecting neuroinflammation was recently put forward as an important approach to induce axonal regeneration, but it remains elusive how inflammatory processes and CNS repair are intertwined. To gain more insight into these interactions, we investigated how immunomodulation affects the regenerative outcome after optic nerve crush (ONC) in the spontaneously regenerating zebrafish. First, inducing intraocular inflammation using zymosan resulted in an acute inflammatory response, characterized by an increased infiltration and proliferation of innate blood-borne immune cells, reactivation of Müller glia, and altered retinal cytokine expression. Strikingly, inflammatory stimulation also accelerated axonal regrowth after optic nerve injury. Second, we demonstrated that acute depletion of both microglia and macrophages in the retina, using pharmacological treatments with both the CSF1R inhibitor PLX3397 and clodronate liposomes, compromised optic nerve regeneration. Moreover, we observed that csf1ra/b double mutant fish, lacking microglia in both retina and brain, displayed accelerated RGC axonal regrowth after ONC, which was accompanied with unusual Müller glia proliferative gliosis. Altogether, our results highlight the importance of altered glial cell interactions in the axonal regeneration process after ONC in adult zebrafish. Unraveling the relative contribution of the different cell types, as well as the signaling pathways involved, may pinpoint new targets to stimulate repair in the vertebrate CNS.


Assuntos
Regeneração Nervosa , Peixe-Zebra , Animais , Macrófagos , Neuroglia , Doenças Neuroinflamatórias , Retina
2.
Biogerontology ; 20(1): 109-125, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30382466

RESUMO

The development of effective treatments for age-related neurodegenerative diseases remains one of the biggest medical challenges today, underscoring the high need for suitable animal model systems to improve our understanding of aging and age-associated neuropathology. Zebrafish have become an indispensable complementary model organism in gerontology research, yet their growth-control properties significantly differ from those in mammals. Here, we took advantage of the clearly defined and highly conserved structure of the fish retina to study the relationship between the processes of growth and aging in the adult zebrafish central nervous system (CNS). Detailed morphological measurements reveal an early phase of extensive retinal growth, where both the addition of new cells and stretching of existent tissue drive the increase in retinal surface. Thereafter, and coinciding with a significant decline in retinal growth rate, a neurodegenerative phenotype becomes apparent,-characterized by a loss of synaptic integrity, an age-related decrease in cell density and the onset of cellular senescence. Altogether, these findings support the adult zebrafish retina as a valuable model for gerontology research and CNS disease modeling and will hopefully stimulate further research into the mechanisms of aging and age-related pathology.


Assuntos
Envelhecimento , Senescência Celular/fisiologia , Doenças Neurodegenerativas , Retina , Envelhecimento/patologia , Envelhecimento/fisiologia , Animais , Sistema Nervoso Central/crescimento & desenvolvimento , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Retina/crescimento & desenvolvimento , Retina/patologia , Peixe-Zebra
3.
Mediators Inflamm ; 2019: 6135795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881223

RESUMO

As adult mammals lack the capacity to replace or repair damaged neurons, degeneration and trauma (and subsequent dysfunction) of the central nervous system (CNS) seriously constrains the patient's life quality. Recent work has shown that appropriate modulation of acute neuroinflammation upon CNS injury can trigger a regenerative response; yet, the underlying cellular and molecular mechanisms remain largely elusive. In contrast to mammals, zebrafish retain high regenerative capacities into adulthood and thus form a powerful model to study the contribution of neuroinflammation to successful regeneration. Here, we used pharmacological immunosuppression methods to study the role of microglia/macrophages during optic nerve regeneration in adult zebrafish. We first demonstrated that systemic immunosuppression with dexamethasone (dex) impedes regeneration after optic nerve injury. Secondly, and strikingly, local intravitreal application of dex or clodronate liposomes prior to injury was found to sensitize retinal microglia. Consequently, we observed an exaggerated inflammatory response to subsequent optic nerve damage, along with enhanced tectal reinnervation. In conclusion, we found a strong positive correlation between the acute inflammatory response in the retina and the regenerative capacity of the optic nerve in adult zebrafish subjected to nerve injury.


Assuntos
Microglia/fisiologia , Regeneração Nervosa/fisiologia , Traumatismos do Nervo Óptico/fisiopatologia , Retina/fisiologia , Animais , Sistema Nervoso Central/fisiologia , Terapia de Imunossupressão , Software , Peixe-Zebra
4.
Mediators Inflamm ; 2017: 9478542, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28203046

RESUMO

Damage to the central nervous system (CNS) is one of the leading causes of morbidity and mortality in elderly, as repair after lesions or neurodegenerative disease usually fails because of the limited capacity of CNS regeneration. The causes underlying this limited regenerative potential are multifactorial, but one critical aspect is neuroinflammation. Although classically considered as harmful, it is now becoming increasingly clear that inflammation can also promote regeneration, if the appropriate context is provided. Here, we review the current knowledge on how acute inflammation is intertwined with axonal regeneration, an important component of CNS repair. After optic nerve or spinal cord injury, inflammatory stimulation and/or modification greatly improve the regenerative outcome in rodents. Moreover, the hypothesis of a beneficial role of inflammation is further supported by evidence from adult zebrafish, which possess the remarkable capability to repair CNS lesions and even restore functionality. Lastly, we shed light on the impact of aging processes on the regenerative capacity in the CNS of mammals and zebrafish. As aging not only affects the CNS, but also the immune system, the regeneration potential is expected to further decline in aged individuals, an element that should definitely be considered in the search for novel therapeutic strategies.


Assuntos
Axônios/metabolismo , Inflamação/metabolismo , Regeneração Nervosa , Neurônios/metabolismo , Animais , Sistema Nervoso Central/lesões , Sistema Nervoso Central/metabolismo , Humanos , Macrófagos/metabolismo , Nervo Óptico/patologia , Peixe-Zebra
5.
Front Aging Neurosci ; 12: 614587, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519421

RESUMO

Although very different in etiology and symptoms, numerous neurodegenerative diseases can be classified as proteinopathies. More so, evidence indicates that the key misfolded proteins at the basis of different neuropathies might share common mechanisms of propagation. As such, the prion-like spreading of protein aggregates through the neural network is subject of intensive research focus and requires adequate models. Here, we made use of the well-defined architecture and large accessibility of the visual system, of which the retinotopic connections represent a simple route of anterograde signaling and an elegant model to investigate transsynaptic, prion-like spreading. In two independent studies, uptake and seeding of alpha-synuclein and tau were examined after intravitreal injection of preformed fibrils. However, extracellular matrix components in the vitreous space and at the vitreoretinal surface appeared to act as a barrier for the entry of both fibrils into the retina. These results show that further experimental refinement is needed to fully realize the potential of the visual system as a model for studying the molecular and cellular mechanisms of anterograde, transsynaptic spreading of prion-like proteins.

6.
Mol Neurobiol ; 56(5): 3175-3192, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30105671

RESUMO

Neural insults and neurodegenerative diseases typically result in permanent functional deficits, making the identification of novel pro-regenerative molecules and mechanisms a primary research topic. Nowadays, neuroregenerative research largely focuses on improving axonal regrowth, leaving the regenerative properties of dendrites largely unstudied. Moreover, whereas developmental studies indicate a strict temporal separation of axogenesis and dendritogenesis and thus suggest a potential interdependency of axonal and dendritic outgrowth, a possible axon-dendrite interaction during regeneration remains unexplored. To unravel the inherent dendritic response of vertebrate neurons undergoing successful axonal regeneration, regeneration-competent adult zebrafish of either sex, subjected to optic nerve crush (ONC), were used. A longitudinal study in which retinal ganglion cell (RGC) dendritic remodeling and axonal regrowth were assessed side-by-side after ONC, revealed that-as during development-RGC axogenesis precedes dendritogenesis during central nervous system (CNS) repair. Moreover, dendrites majorly shrank before the start of axonal regrowth and were only triggered to regrow upon RGC target contact initiation, altogether suggestive for a counteractive interplay between axons and dendrites after neuronal injury. Strikingly, both retinal mechanistic target of rapamycin (mTOR) and broad-spectrum matrix metalloproteinase (MMP) inhibition after ONC consecutively inhibited RGC synapto-dendritic deterioration and axonal regrowth, thus invigorating an antagonistic interplay wherein mature dendrites restrain axonal regrowth. Altogether, this work launches dendritic shrinkage as a prerequisite for efficient axonal regrowth of adult vertebrate neurons, and indicates that molecular/mechanistic analysis of dendritic responses after damage might represent a powerful target-discovery platform for neural repair.


Assuntos
Axônios/metabolismo , Sistema Nervoso Central/fisiologia , Dendritos/metabolismo , Regeneração Nervosa , Peixe-Zebra/fisiologia , Animais , Axônios/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Traumatismos do Nervo Óptico/patologia , Traumatismos do Nervo Óptico/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
7.
Neurobiol Aging ; 60: 1-10, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28917662

RESUMO

Dysfunction of the central nervous system (CNS) in neurodegenerative diseases or after brain lesions seriously affects life quality of a growing number of elderly, since the adult CNS lacks the capacity to replace or repair damaged neurons. Despite intensive research efforts, full functional recovery after CNS disease and/or injury remains challenging, especially in an aging environment. As such, there is a rising need for an aging model in which the impact of aging on successful regeneration can be studied. Here, we introduce the senescent zebrafish retinotectal system as a valuable model to elucidate the cellular and molecular processes underlying age-related decline in axonal regeneration capacities. We found both intrinsic and extrinsic response processes to be altered in aged fish. Indeed, expression levels of growth-associated genes are reduced in naive and crushed retinas, and the injury-associated increase in innate immune cell density appears delayed, suggesting retinal inflammaging in old fish. Strikingly, however, despite a clear deceleration in regeneration onset and early axon outgrowth leading to an overall slowing of optic nerve regeneration, reinnervation of the optic tectum and recovery of visual function occurs successfully in the aged zebrafish retinotectal system.


Assuntos
Envelhecimento/fisiologia , Fenômenos Fisiológicos Celulares/fisiologia , Senescência Celular/fisiologia , Regeneração Nervosa/fisiologia , Nervo Óptico/fisiologia , Peixe-Zebra/fisiologia , Animais , Modelos Animais , Colículos Superiores/fisiologia
8.
J Comp Neurol ; 524(7): 1472-93, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26509469

RESUMO

Overcoming the failure of axon regeneration in the mammalian central nervous system (CNS) after injury remains a major challenge, which makes the search for proregenerative molecules essential. Matrix metalloproteinases (MMPs) have been implicated in axonal outgrowth during CNS development and show increased expression levels during vertebrate CNS repair. In mammals, MMPs are believed to alter the suppressive extracellular matrix to become more permissive for axon regrowth. We investigated the role of MMPs in axonal regeneration following optic nerve crush (ONC) in adult zebrafish, which fully recover from such injuries due to a high intrinsic axon growth capacity and a less inhibitory environment. Lowering general retinal MMP activity through intravitreal injections of GM6001 after ONC strongly reduced retinal ganglion cell (RGC) axonal regrowth, without influencing RGC survival. Based on a recently performed transcriptome profiling study, the expression pattern of four MMPs after ONC was determined via combined use of western blotting and immunostainings. Mmp-2 and -13a were increasingly present in RGC somata during axonal regrowth. Moreover, Mmp-2 and -9 became upregulated in regrowing RGC axons and inner plexiform layer (IPL) synapses, respectively. In contrast, after an initial rise in IPL neurites and RGC axons during the injury response, Mmp-14 expression decreased during regeneration. Altogether, a phase-dependent expression pattern for each specific MMP was observed, implicating them in axonal regrowth and inner retina remodeling after injury. In conclusion, these data suggest a novel, neuron-intrinsic function for multiple MMPs in axon regrowth that is distinct from breaking down environmental barriers. J. Comp. Neurol. 524:1472-1493, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Regeneração Nervosa/fisiologia , Crescimento Neuronal/fisiologia , Doenças do Nervo Óptico/enzimologia , Vias Visuais/patologia , Análise de Variância , Animais , Dipeptídeos/farmacologia , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz/farmacologia , Metaloproteinases da Matriz , Compressão Nervosa/métodos , Regeneração Nervosa/efeitos dos fármacos , Crescimento Neuronal/efeitos dos fármacos , Doenças do Nervo Óptico/patologia , Tubulina (Proteína)/metabolismo , Peixe-Zebra
9.
Ageing Res Rev ; 24(Pt B): 358-68, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26538520

RESUMO

Considering the increasing number of elderly in the world's population today, developing effective treatments for age-related pathologies is one of the biggest challenges in modern medical research. Age-related neurodegeneration, in particular, significantly impacts important sensory, motor, and cognitive functions, seriously constraining life quality of many patients. Although our understanding of the causal mechanisms of aging has greatly improved in recent years, animal model systems still have much to tell us about this complex process. Zebrafish (Danio rerio) have gained enormous popularity for this research topic over the past decade, since their life span is relatively short but, like humans, they are still subject to gradual aging. In addition, the extensive characterization of its well-conserved molecular and cellular physiology makes the zebrafish an excellent model to unravel the underlying mechanisms of aging, disease, and repair. This review provides a comprehensive overview of the progress made in zebrafish gerontology, with special emphasis on nervous system aging. We review the evidence that classic hallmarks of aging can also be recognized within this small vertebrate, both at the molecular and cellular level. Moreover, we illustrate the high level of similarity with age-associated human pathologies through a survey of the functional deficits that arise as zebrafish age.


Assuntos
Envelhecimento/fisiologia , Modelos Animais de Doenças , Doenças do Sistema Nervoso , Sistema Nervoso , Peixe-Zebra/fisiologia , Animais , Humanos , Sistema Nervoso/metabolismo , Sistema Nervoso/patologia , Sistema Nervoso/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA