Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(19): 3661-3676.e8, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36206740

RESUMO

Mitochondrial Ca2+ uptake, mediated by the mitochondrial Ca2+ uniporter, regulates oxidative phosphorylation, apoptosis, and intracellular Ca2+ signaling. Previous studies suggest that non-neuronal uniporters are exclusively regulated by a MICU1-MICU2 heterodimer. Here, we show that skeletal-muscle and kidney uniporters also complex with a MICU1-MICU1 homodimer and that human/mouse cardiac uniporters are largely devoid of MICUs. Cells employ protein-importation machineries to fine-tune the relative abundance of MICU1 homo- and heterodimers and utilize a conserved MICU intersubunit disulfide to protect properly assembled dimers from proteolysis by YME1L1. Using the MICU1 homodimer or removing MICU1 allows mitochondria to more readily take up Ca2+ so that cells can produce more ATP in response to intracellular Ca2+ transients. However, the trade-off is elevated ROS, impaired basal metabolism, and higher susceptibility to death. These results provide mechanistic insights into how tissues can manipulate mitochondrial Ca2+ uptake properties to support their unique physiological functions.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Trifosfato de Adenosina , Animais , Cálcio/metabolismo , Canais de Cálcio , Proteínas de Ligação ao Cálcio/genética , Dissulfetos/metabolismo , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Espécies Reativas de Oxigênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(16): e2217665120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036971

RESUMO

The mitochondrial calcium uniporter is a Ca2+ channel that imports cytoplasmic Ca2+ into the mitochondrial matrix to regulate cell bioenergetics, intracellular Ca2+ signaling, and apoptosis. The uniporter contains the pore-forming MCU subunit, an auxiliary EMRE protein, and the regulatory MICU1/MICU2 subunits. Structural and biochemical studies have suggested that MICU1 gates MCU by blocking/unblocking the pore. However, mitoplast patch-clamp experiments argue that MICU1 does not block, but instead potentiates MCU via allosteric mechanisms. Here, we address this direct clash of the proposed MICU1 function. Supporting the MICU1-occlusion mechanism, patch-clamp demonstrates that purified MICU1 strongly suppresses MCU Ca2+ currents, and this inhibition is abolished by mutating the MCU-interacting K126 residue. Moreover, a membrane-depolarization assay shows that MICU1 prevents MCU-mediated Na+ flux into intact mitochondria under Ca2+-free conditions. Examining the observations underlying the potentiation model, we found that MICU1 occlusion was not detected in mitoplasts not because MICU1 cannot block, but because MICU1 dissociates from the uniporter complex. Furthermore, MICU1 depletion reduces uniporter transport not because MICU1 can potentiate MCU, but because EMRE is down-regulated. These results firmly establish the molecular mechanisms underlying the physiologically crucial process of uniporter regulation by MICU1.


Assuntos
Cálcio , Proteínas de Transporte da Membrana Mitocondrial , Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Canais de Cálcio/metabolismo , Membranas Mitocondriais/metabolismo , Cálcio da Dieta , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo
3.
ACS Synth Biol ; 11(10): 3318-3329, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36153971

RESUMO

Proteases with reprogrammed specificity for nonnative substrates are highly desired in synthetic biology and biomedicine. However, generating reprogrammed proteases that are orthogonal and highly specific for a new target has been a major challenge. In this work, we sought to expand the versatility of protease systems by engineering an orthogonal botulinum neurotoxin serotype B (BoNT/B) protease that recognizes an orthogonal substrate. We designed and validated an orthogonal BoNT/B protease system in mammalian cells, combining mutations in the protease with compensatory mutations in the protease substrate and incorporating a truncated target sequence and then demonstrated use of this orthogonal BoNT/B protease-substrate combination to regulate complex transcriptional circuitry in mammalian cells. Transposing this platform into yeast, we demonstrated utility of this approach for in vivo protease evolution. We tested this platform with the newly designed orthogonal protease and then used it in a high-throughput screen to identify novel orthogonal protease/protease substrate combinations. While carrying out this work, we also generated new cleavage reporters that could be used to report botulinum toxin protease activity in mammalian cells using simple fluorescent readouts. We envision that these approaches will expand the applications of botulinum protease in new directions and aid in the development of new reprogrammed proteases.


Assuntos
Endopeptidases , Mamíferos , Animais , Sorogrupo , Endopeptidases/genética , Endopeptidases/metabolismo , Proteólise , Especificidade por Substrato , Mamíferos/metabolismo
4.
STAR Protoc ; 2(4): 100979, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34877549

RESUMO

The mitochondrial calcium uniporter, which mediates mitochondrial Ca2+ uptake, regulates key cellular functions, including intracellular Ca2+ signaling, cell-fate determination, and mitochondrial bioenergetics. Here, we describe two complementary strategies to quantify the uniporter's transport activity. First, we detail a mitochondrial Ca2+ radionuclide uptake assay in cultured cell lines. Second, we describe electrophysiological recordings of the uniporter expressed in Xenopus oocytes. These approaches enable a detailed kinetic analysis of the uniporter to link its molecular properties to physiological functions. For complete details on the use and execution of this protocol, please refer to Tsai and Tsai (2018) and Phillips et al. (2019).


Assuntos
Canais de Cálcio , Cálcio/metabolismo , Eletrofisiologia/métodos , Oócitos , Animais , Canais de Cálcio/análise , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Técnicas de Cultura de Células , Linhagem Celular , Oócitos/citologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Xenopus
5.
Cell Rep ; 33(10): 108486, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296646

RESUMO

The mitochondrial calcium uniporter is a multi-subunit Ca2+-activated Ca2+ channel, made up of the pore-forming MCU protein, a metazoan-specific EMRE subunit, and MICU1/MICU2, which mediate Ca2+ activation. It has been established that metazoan MCU requires EMRE binding to conduct Ca2+, but how EMRE promotes MCU opening remains unclear. Here, we demonstrate that EMRE controls MCU activity via its transmembrane helix, while using an N-terminal PKP motif to strengthen binding with MCU. Opening of MCU requires hydrophobic interactions mediated by MCU residues near the pore's luminal end. Enhancing these interactions by single mutation allows human MCU to transport Ca2+ without EMRE. We further show that EMRE may facilitate MCU opening by stabilizing the open state in a conserved MCU gating mechanism, present also in non-metazoan MCU homologs. These results provide insights into the evolution of the uniporter machinery and elucidate the mechanism underlying the physiologically crucial EMRE-dependent MCU activation process.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cálcio/metabolismo , Canais de Cálcio/fisiologia , Canais de Cálcio/ultraestrutura , Proteínas de Ligação ao Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/ultraestrutura , Proteínas de Transporte de Cátions/fisiologia , Proteínas de Transporte de Cátions/ultraestrutura , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Membranas Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA